
LATEX for beginners using CoCalc

Valerio De Angelis

Spring 2025

Preface

This is a beginner’s guide to preparing documents in LATEX using the web based system
CoCalc (www.cocalc.com). It assumes no prior knowledge of LATEX, CoCalc, or computer
programming.
This document is a modified version of the document “LATEX for beginners”, prepared by the
Information Services Office of the University of Edinburgh, https://www.ed.ac.uk/information-
services Edition 5, March 2014 Document Reference: 3722-2014, Copyright©IS 2014.
This modification of the original workbook is designed to be used with the Math 4005 course
‘Advanced and Experimental Problem Solving’ at Xavier University of Louisiana.

Permission is granted to any individual or institution to use, copy or redistribute this doc-
ument whole or in part, so long as it is not sold for profit and provided that the above
copyright notice and this permission notice appear in all copies.
Where any part of this document is included in another document, due acknowledgement is
required.

i

Contents

1 Introduction 1

2 Document Structure 2

3 Typesetting Text 7

4 Equations 10

5 Tables and matrices 16

6 Figures 20

7 Inserting References 21

8 Further Reading 22

ii

1 Introduction

1.1 What is LATEX?

LATEX is an open source software widely used by mathematics researchers, instructors and
students to prepare professional-looking documents. 1

Proficiency in using LATEX has become an essential part of most mathematics programs in
the US and elsewhere, both graduate and undergraduate. Virtually all mathematics theses
or dissertations are written in LATEX. Students who graduate in Mathematics with little
or no knowledge of LATEX are sure to be at a disadvantage if they wish to pursue further
graduate or professional studies.

The LATEX software is built on TEX, a digital typesetting system originally conceived and
written by Donald Knuth in the 1980’s when he became disappointed by the quality of
mathematical typesetting available at the time. As such, TEX and its descendant LATEX are
especially good at typesetting mathematical expressions of almost any complexity, because
they were originally designed exactly for that purpose.

But from a user’s point of view, the main difference between LATEX and a word processor
(such as Microsoft Word) is not its ability to handle complex mathematical typesetting. The
difference is that LATEX is specifically conceived to make users focus on the content of what
they are writing, and not on how it will look on the paper. By contrast, a word processor
such as Microsoft Word is of the WYSIWYG type (What You See Is What You Get): what
you see on the screen as you type is exactly what will be printed on your final document.
This means that the program will not provide any help in structuring and formatting the
document appropriately. In this sense, a better description of a WYSIWYG system is What
You See Is All You Get.

With LATEX you concentrate on the logical structure of what you are writing, not on how
it will look. A typical example is the use of boldface text. Most of the time people use
it in order to emphasize a word. But there are other ways to do that: we could use italic
or ALL CAPS with a similar effect. When writing in LATEX we do not worry about how
to best emphasize a word. We type instead \emph{word} where word is the word to be
emphasized, and then let LATEX decide how to render that in print. Similarly, if we want to
divide our document in different units such as chapters, sections, or subsections, we do not
worry how and where we should place the title of each unit, what font to use, how to number
them, etc. We simply write \chapter{chaptertitle} \subsection{sectiontitle}, and
so on, and LATEX will do all the right formatting for us.

To prepare a LATEX document, we need to write the content in a plain text file with extension
.tex and with some appropriate code at the beginning. Then processing the .tex file with
LATEX will produce the output as a pdf document that can be saved, mailed or printed.
While this process requires some significant preparation using a standard LATEX package for
personal computers, it is made much easier and accessible by the web based Co-Calc system,
that we will use in this course. No special software needs to be downloaded. All you need

1In spite of the X at end of its name, it is pronounced lay-tek. That’s because the letters T e X stand
for the Greek letters τ (tau), ε (epsilon), χ (chi) and derive from the Greek τεχνη, that is the origin of the
English word technology. So that is the word you should think about when pronouncing the TeX in LATEX.

1

is a computer connected to the internet and a web browser.

1.2 Before You Start

The following conventions are used throughout this workbook:

• Actions for you to carry out are bulleted with an arrow ⇒.

• Text you type is written in this font.

• Menu commands, button names and other text appearing on the CoCalc page are
shown in bold.

Although the code in this workbook should work in any LATEX editor, specific examples and
screenshots refer to the web based cloud computing and course management platform for
computational mathematics CoCalc (https://cocalc.com) as available in January 2022.

2 Document Structure

2.1 Essentials

⇒ Login to your CoCalc account (or create one).

⇒ Open the project you wish to work on (or create a new one), and navigate to (or
create) the folder where you want to store the LATEX document. To create new folder,
click on the arrow next to New then select folder at the bottom of the menu.

⇒ Click on the big blue box Create or Upload Files..., then enter a name for your
document in the text box, then click on LaTeX document. In the picture below we
are using the filename FirstDoc.

After a short wait, your screen will look like this:

Note that there are four different frames, two on the left and two on the right.

2

• The top left side is the ‘LaTeX source code’ frame, and that is where you will type
the content of your document.

• The top right side shows the finished product, as a pdf file. This is the ‘PDF - Preview’
frame.

• The bottom left is a ‘Errors and Warnings’ frame, used for troubleshooting.

• The bottom right is a ‘Build Control and Log’ frame.

By clicking anywhere on a frame, you will notice that several icons appear on the top bar.
On all frames except the ‘PDF - Preview’ frame, you will find the ‘Build’ icon.

⇒ Place your cursor on the various icons on the top left frame and notice the comment
that appear.

⇒ Now click on the top right window and notice the icons that appear on the top bar.
Explore the comments for the icons.

Note that a standard generic template is automatically loaded in the ‘LaTeX source code’
frame, and it contains line numbers. The line numbers will make it easier to compare your
code with the screenshots and find errors.

2.2 The preamble and title

We will now analyze the content of the automatically loaded LATEX code on the top left
frame line by line.

• Line 1: \documentclass{article}
This command must appear at the start of every LATEX document, and it specifies
the type. Besides ‘article’ (that we will use in this workbook), other available types
are ‘report’, ‘book’, ‘letter’, ‘slides’, ‘standalone’, etc. Note the backslash \ before the
command documentclass. All LATEX commands are preceded by a backslash. The
curly braces {} are used to enter mandatory input. If you leave them out, you will get
an error message. In this case, the mandatory input is the type of document we are
preparing. If a command also accepts optional input, the square brackets [] are used.
So for example
\documentclass[twocolumn]{article} is used to format the document on two columns
instead of one. Anything typed after
\documentclass{article} and before \begin{document} is known as the pream-
ble, and will affect the whole document.

• Notice several lines that contain the code \usepackage. This is used to load blocks of
code (called packages) that enhance the functionality of LATEX . We will soon make
use of a package. Now jump to the line containing \title (line 16 in the CoCalc version
as of this writing).

3

• \title{Title of Document} This is the title of the document, as you can see from
the pdf output on the right.

⇒ As your first interaction with the system, change Title of Document to Math 4005,
and watch as the system updates the pdf output. You may have to wait several
seconds, up to a minute or so. If you do not want to wait, click the Build icon on the
top bar.

• \author{Name of Author} This is the author.

⇒ Change Name of Author to your name, and click on Build to see the update.

• Note that there is no code for the date, but the pdf output displays today’s date by
default.

⇒ Add the code \date{January 14, 2025} to force the date to be a different one, and
click Build.

• If we prefer not to have any date displayed, we use \date{}

⇒ Change \date{January 14, 2025} to \date{} and click on Build.

• Ignore the next few lines, up to the line containing
\begin{document}. This is the command that tells LATEX where the content of the
document begins.

• The next line is \maketitle. This is telling LATEX to actually display the title, author
and date.

• In the CoCalc template, there is no other input until the \end{document} line, that
tells LATEX where the document content ends. All input after the \end{document}
line will be ignored.

⇒ Enter the text This is my first document anywhere after
\begin{document} and before \end{document}, and click Build.

• Typing a short sentence as you did in the previous item is not going to illustrate what
a full page of text will look like in LATEX . We will now make use of a package whose
only aim is to fill a full page with already prepared text.

⇒ Go back to the second line (just after \documentclass{article}) and type \usepackage{lipsum}

⇒ Go the line where you typed This is my first document and replace it with \lipsum

⇒ Click on build. You will see over a page of some Latin (and meaningless) text. The
\lipsum command can also be used with an optional argument. So \lipsum[1] will
print only the first paragraph of the same Latin text, and \lipsum[1-3] will print the
first three paragraphs.

⇒ We now experiment with optional input for a command. Replace
\documentclass{article} on Line 1 with
\documentclass[twocolumn]{article} and click on Build to see the result.

4

Notice that there are several lines in the source code shown in red, and with a % sign at the
beginning. Every line that begins with the % sign is ignored by LATEX . This feature is used
to add comments to the source code, that will help you remember why you used some code
and what it does. It can also be used (as it is here) to exclude from the current document
some piece of code that we may want to use on another document using the same template.
Comments will be discussed again in Section 3.4.

You will also notice several empty lines in the source code frame. The empty lines aren’t nec-
essary2, but they will make it easier to navigate between the different parts of the document
as it gets longer.

2.3 Troubleshooting

If there are some errors in the code, error messages will appear in the bottom left frame.
These messages often provide useful information to find what the problem is. Experiment
by removing the backslash from
\documentclass{article} and click on Build. You will see error messages in the bottom
left frame, and no output in the PDF - Preview frame. Reading the error messages in the
bottom left frame we can easily find out that the \documentclass command is missing.

Sometimes the system will try to display some output even when errors are present. Ex-
periment by adding a % sign at the beginning of the line with \usepackage{lipsum}. The
PDF - Preview frame should now show some partial content, but there is an error message
because LATEX cannot find the command \lipsum.

2.4 Sections

You should divide your document into chapters (if needed), sections and sub-sections. The
following sectioning commands are available for the article class:

• \section{...}

• \subsection{...}

• \subsubsection{...}

• \paragraph{...}

• \subparagraph{...}

The title of the section replaces the dots between the curly brackets. With the report and
book classes we also have \chapter{...}.

• ⇒ Remove the optional argument [twocolumn] from the first line and the % sign from
the \usepackage{lipsum} line, and replace \lipsum with the following:

\section{Introduction}

\lipsum[1]

2See section 3.4 on page 8 for information about how LATEX deals with empty space in the .tex file.

5

\section{The problem I am solving}

\lipsum[2]

\subsection{First step}

\lipsum[3]

\subsection{Second step}

\lipsum[4]

\section{Answer}

\lipsum[5]

⇒ Click on Build. You will see how your document is now organized in numbered
sections and subsections.

2.5 Labelling

You can label any of the sectioning commands so they can be referred to in other parts of
the document. Label the section with \label{labelname}. Then type \ref{labelname} or
\pageref{labelname}, when you want to refer to the section or page number of the label.

⇒ Type \label{probl} on a new line directly below
\section{The problem I am solving}.

⇒ Type Referring to section \ref{probl} on page \pageref{sec1} at the begin-
ning of the Answer section, and check the PDF-Preview frame.

You will see in the pdf output a clickable box with red border and with the number of the
section inside, that when clicked will take you to Section 2.

2.6 Table of Contents

If you use sectioning commands it is easy to generate a table of contents. Type \tableofcontents
where you want the table of contents to appear in your document — often directly after the
title page.

You may also want to change the page numbering so that roman numerals (i, ii, iii) are
used for pages before the main document starts. This will also ensure that the main docu-
ment starts on page 1. Page numbering can be switched between arabic and roman using
\pagenumbering{...}.

⇒ Type the following on a new line below \maketitle:

\pagenumbering{roman}

\tableofcontents

6

\newpage

\pagenumbering{arabic}

The \newpage command inserts a page break so that we can see the effect of the page
numbering commands. Click on Build and check the PDF-Preview frame.

3 Typesetting Text

3.1 Font Effects

There are LATEX commands for a variety of font effects:

\textit{words in italics} words in italics
\textsl{words slanted} words slanted
\textsc{words in smallcaps} words in smallcaps
\textbf{words in bold} words in bold
\texttt{words in teletype} words in teletype

\textsf{sans serif words} sans serif words
\textrm{roman words} roman words
\underline{underlined words} underlined words

⇒ Add some more text to your document and experiment with different text effects.

3.2 Font Sizes

There are LATEX commands for a range of font sizes:

{\tiny tiny words} tiny words

{\scriptsize scriptsize words} scriptsize words

{\footnotesize footnotesize words} footnotesize words

{\small small words} small words

{\normalsize normalsize words} normalsize words
{\large large words} large words
{\Large Large words} Large words
{\LARGE LARGE words} LARGE words
{\huge huge words} huge words

⇒ Experiment with different font sizes in your document.

3.3 Lists

LATEX supports two types of lists: enumerate produces numbered lists, while itemize is for
bulleted lists. Each list item is defined by \item. Lists can be nested to produce sub-lists.

7

⇒ Type the following to produce a numbered list with a bulleted sub-list:

\begin{enumerate}

\item First thing

\item Second thing

\begin{itemize}

\item A sub-thing

\item Another sub-thing

\end{itemize}

\item Third thing

\end{enumerate}

⇒ Click on the Build button and check the PDF.

The list should look like this:

1. First thing

2. Second thing

• A sub-thing

• Another sub-thing

3. Third thing

It is easy to change the bullet symbol using square brackets after the \item, for example,
\item[-] will give a dash as the bullet. You can even use words as bullets, for example,
\item[One].

Code:

\begin{itemize}

\item[-] First thing

\item[+] Second thing

\begin{itemize}

\item[Fish] A sub-thing

\item[Plants] Another sub-thing

\end{itemize}

\item[Q] Third thing

\end{itemize}

Output:

- First thing

+ Second thing

Fish A sub-thing

Plants Another sub-thing

Q Third thing

3.4 Comments and Spacing

Comments are created using %. When LATEX encounters a % character while processing a
.tex file, it ignores the rest of the line (until the [Return] key has been pressed to start a
new line — not to be confused with line wrapping in your editor). This can be used to write
notes in the input file which will not show up in the printed version. In the following code:

The French revolution of 1789 had a profound effect on the

8

European balance of power, % remember to add a reference here

and it took place 13 years after the American

declaration of independence.

the text after the % is a comment for the writer, not to be shown in the output, that will
be:

The French revolution of 1789 had a profound effect on the European balance of power, and
it took place 13 years after the American declaration of independence.

Multiple consecutive spaces in LATEX are treated as a single space. Several empty lines are
treated as one empty line. The main function of an empty line in LATEX is to start a new
paragraph. In general, LATEX ignores blank lines and other empty space in the .tex file. Two
backslashes (\\) can be used to start a new line.

⇒ Experiment with putting comments and blank lines in your document.

If you want to add vertical blank space into your document use the \vspace{...} command.
This will add blank vertical space of a height specified in typographical points (pt) or other
units. For example, \vspace{12pt} will add space equivalent to the height of a 12pt font,
and \vspace{0.5in} will add a vertical space of 0.5 inches. Other units that can be used are
ex, em (approximately the space taken by the letters x or m), and cm. Note that \vspace

needs to be used after a blank line, or else it will have no effect.

In a similar way, \hspace{...} is used to insert horizontal blank space. To start a new
page, use the command \newpage.

3.5 Special Characters

The following symbols are reserved characters which have a special meaning in LATEX:

$ % ^ & _ { } ~ \

All of these apart from the backslash \ can be inserted as characters in your document by
adding a prefix backslash:

\# \$ \% \^{} \& _ \{ \} \~{}

The above code will produce:

$ % ˆ & { } ˜

Note that you need to type a pair of curly brackets {} after the hat ^ and tilde ~, otherwise
these will appear as accents over the following character. For example, \^e produces ê.

The backslash character \ can not be entered by adding a prefix backslash, \\, as this is
used for line breaking. Use the \textbackslash command instead.

⇒ Type code to produce the following sentence in your document:

9

Item #1A\642 costs $8 & is sold at a ˜10% profit.

Send email to your instructor or check the .tex file of this workbook if you need help.

3.6 Colored Text

To put colored text in your document you need to use a package. There are many packages
that can be used with LATEX to enhance its functionality. Packages are included in the
preamble (i.e. before the \begin{document} command). Packages are activated using the
\usepackage[options]{package} command, where package is the name of the package
and options is an optional list of keywords that trigger special features in the package.

The basic color names that \usepackage{color} knows about are black, red, green, blue,
cyan, magenta, yellow and white:

Red, green, blue, cyan, magenta, yellow and white .

The following code produces colored text:

{\color{color_name}text}

Where color_name is the name of the color you want, and text is the text you want to be
colored.

⇒ Type \usepackage{color} on the line before \begin{document}.

⇒ Type {\color{red}fire} in your document.

⇒ Click on the Build button and check the PDF.

The word ‘fire’ should appear in red.

It is possible to add options that allow \usepackage{color} to understand more color
names, and even to define your own colors. It is also possible to change the background color
of text. To obtain yellow use the command \colorbox{black}{\color{yellow}yellow}.

If you want more information see the Colors chapter in the LATEX Wikibook3.

4 Equations

One of the main reasons for writing documents in LATEX is because it is really good at
typesetting equations. Equations are written in math mode.

3http://en.wikibooks.org/wiki/LaTeX/Colors

10

http://en.wikibooks.org/wiki/LaTeX/Colors

4.1 Inserting Equations

You can enter math mode with an opening and closing dollar sign $. This can be used
to write mathematical symbols within a sentence — for example, typing $1+2=3$ produces
1 + 2 = 3. Math expression written this way are called inline.

If instead of an inline math expression you want a displayed equation on its own line use
$$...$$.

For example, $$1+2=3$$ produces:
1 + 2 = 3.

There are many math expressions that can only be typed using math mode (as we will soon
see with exponents, subscripts, etc.). But even when an expression is simple enough that no
special commands are necessary (such as 5x-3x=2x), it is important to use math mode every
time we are typing math symbols. Compare the outputs resulting from typing 5x-3x=2x

with and without math mode:

Source code Output
5x-3x=2x 5x-3x=2x

$5x-3x=2x$ 5x− 3x = 2x

As you can see, the minus sign − used in math typesetting is quite different from the
hyphen - produced by the computer keyboard, the spacing between symbols is different,
and the font of mathematical variables such as x is rendered in italic. Any reader with
even moderate experience in mathematical typesetting will recognize an equation such as
5x-3x=2x as incorrectly typed in LATEX without using math mode.

For a numbered displayed equation, use \begin{equation}...\end{equation}.

For example, \begin{equation}1+2=3\end{equation} produces:

1 + 2 = 3 (1)

The equation label (4.1) that you see at the right refers to Chapter 4, Section 1. This will
only appear if you are using a document class with chapters, such as report.

Use \begin{eqnarray}...\end{eqnarray} to write equation arrays for a series of equations
or inequalities. For example —

\begin{eqnarray}

a & = & b + c \\

& = & y - z

\end{eqnarray}

Produces:

a = b+ c (2)

= y − z (3)

11

For unnumbered equations add the star symbol * after the equation or eqnarray command
(i.e. use {equation*} or {eqnarray*}).

4.2 Mathematical Symbols

Although some basic mathematical symbols such as + - * / = can be accessed directly from
the keyboard, most must be inserted using a command.

This section is a very brief introduction to using LATEX to produce mathematical symbols
— the Mathematics chapter in the LATEX Wikibook is an excellent tutorial on mathematical
symbol commands, which you should refer to if you want to learn more. If you want to find
the command for a specific symbol try Detexify4, which can recognize hand drawn symbols.

4.2.1 Powers and Indices

Exponents are inserted using the hat ^ symbol. For example, n^2 produces n2.

Subscripts are inserted using an underscore _. For example, x_2 produces x2.

If the exponent or subscript includes more than one character, group them using curly
brackets {...}, for example e^{x^2} produces ex

2

and x_{n-2} produces xn−2.

4.2.2 Fractions

Fractions are inserted using \frac{numerator}{denominator}.

$$\frac{a}{3}$$ produces:
a

3

Fractions can be nested.

$$\frac{y}{\frac{3}{x}+b}$$ produces:

y
3
x + b

4.2.3 Roots

Square root symbols are inserted using \sqrt{...} where ... is replaced by the square
root content. For cube roots or higher roots, use the optional square brackets [...].

$$\sqrt{2y}$$ produces: √
2y

$$\sqrt[3]{2y}$$ produces:
3
√

2y

4http://detexify.kirelabs.org

12

http://detexify.kirelabs.org

4.2.4 Inequalities, Other symbols

The following table shows the code to produce the symbols we are likely to use in this course.

Source code Output
\leq ≤
\geq ≥
\neq 6=
\equiv ≡
$\in $ ∈
\notin /∈
∞ ∞
\cup ∪

Source code Output
\cap ∩
\subset ⊂
\emptyset ∅
\exists ∃
\forall ∀
\rightarrow →
\Rightarrow ⇒
\Leftrightarrow ⇔

4.2.5 Limits, Sums and Integrals

The command $$\lim_{x\rightarrow \infty}f(x)$$ produces

lim
x→∞

f(x).

The command \sum inserts a sum symbol; \int inserts an integral. For both symbols,
the lower limit is specified by an underscore character , and the upper hat limit by a hat
character ˆ.

$$\sum_{k=1}^5 x^k$$ produces:
5∑
k=1

xk

$$\int_a^\infty f(x)dx$$ produces: ∫ ∞
a

f(x)dx.

The \lim, \sum and \int commands are displayed differently in inline mode. So
$\lim_{x\rightarrow \infty} f(x)$ produces limx→∞ f(x), $\sum_{k=1}^5 x^k$ pro-

duces
∑5
k=1 x

k and $\int_a^b f(x)dx$ produces
∫ b
a
f(x)dx. Sometimes we want to use the

displayed form for a limit, sum or integral without actually having to display it. In this case
we can use the command \displaystyle. So $\displaystyle \lim_{x\rightarrow \infty} f(x)

produces lim
x→∞

f(x),

$\displaystyle \sum_{k=1}^5 x^k$ produces

5∑
k=1

xk and

$\displaystyle \int_a^b f(x)dx$ produces

∫ b

a

f(x)dx.

In a similar way, the $\frac{1}{2}$ command used inline results is a smaller fraction: 1
2 .

If we prefer to have the full size fraction for inline output, we can use $\dfrac{1}{2}$:
1

2
.

13

4.2.6 Greek letters

Greek letters can be typed in math mode using the name of the letter preceded by a backslash
\. Many Greek capital letters are the same in the Latin alphabet. For example, capital α
(the Greek letter alpha) is A, the same as capital a. For those that are different capitalize
the first letter of the name to produce a capital Greek letter.

For example:

α = α
β = β
δ, Δ = δ,∆
θ, Θ = θ,Θ
μ = µ
π, Π = π,Π
σ, Σ = σ,Σ
ϕ, Φ = φ,Φ
ψ, Ψ = ψ,Ψ
ω, Ω = ω,Ω

4.2.7 Mathematical functions and text in math mode

In properly typeset mathematics, the common mathematical functions exp, log, ln, all the
trig functions sin, cos, tan, sec, csc, cot and the inverses arcsin, arccos, arctan as well as max,
min, sup, inf, should not be italicized.

But if we type them in math mode (as it is natural to do, because they will occur in math
expressions), LATEX will interpret them as variables multiplied together instead of names of
math functions, and so it will render them in italic.

So typing $cos(2x)$ will produce cos(2x) instead of the correct cos(2x). LATEX thinks that
cos means the variable c times the variable o times the variable s. In order to avoid this,
we need to place a backslash in front of each of these functions. So to produce cos(2x), use
$\cos(2x)$, to produce ln(1− x) use $\ln(1-x)$, and so on.

A similar problem occurs if we need to write a few plain text words inside an expression in
math mode. Suppose for example we want to produce the output

cos(nπ) = −1 if n is odd .

If we use the code $$\cos(n\pi) =-1 if n is odd.$$ we will get the output

cos(nπ) = −1ifnisodd.

This is quite bad, not just because the text is in italic, but also because LATEX ignores spaces
when it thinks the letters are all variables multiplied together. To avoid this, we place any
text inside a math expression in the argument of the command \mbox{...}. So the correct
code for the above example is $$ \cos(n\pi) =-1 \mbox{ if } n \mbox{ is odd } .$$

Note that we added a space before and after the words. Otherwise LATEX will write them
with the right font, but without the proper spacing.

14

4.3 Delimiters

A delimiter is any symbol that is used (normally in pairs) to group together symbols or
expressions. The most common delimiters are the parentheses: (), the brackets [], and
the curly brackets { }. Remember from the previous section that the curly brackets are a
special character for LATEX and we need to type \{ or \} to obtain them.

Other delimiters are the vertical bars | | , the floor function b c (produced with the \lfloor

and \rfloor commands), the ceiling function d e (produced with \lceil and \rceil), the
double vertical bars ‖ ‖ (used for the norm of a vector for example, and produced with the
\| command).

An important property of delimiters in mathematical typesetting is that they must be of the
right size to appropriately enclose the expression they delimit. So for example the output

sin(
1

x
)

is not acceptable in a properly prepared LATEX document. The correct output needs to be

sin

(
1

x

)
.

LATEX provides a convenient way to automatically adjust the size of any delimiter: place the
command \left just before the left delimiter (with no spaces in between), and \right just
before the right one. So the code
$$f\left(\frac{1}{2}\right)$$ will produce the correct output for the last example.

Occasionally, we need to adjust the size of a right delimiter that does not have a matching
left delimiter (more rarely, a left delimiter without a matching right delimiter). An example
of the first case is an expression such as

t2 − 1

t2 + 1

∣∣∣∣1
0

that could occur in a Calculus problem. In this case, simply omitting the \left command
will produce an error, because LATEX expects each \right to have a corresponding \left.
So we use an ‘invisible’ left delimiter with the command \left., where the \left is followed
by a period, with no spaces in between. So the code for the previous output is
$$\left.\frac{t^2-1}{t^2+1}\right|_0^1$$

Exercise 1. ⇒ Write code to produce the following equations:

lim
x→0

(
sinx

x
− 1

)
= 0 (1)

e =

∞∑
n=0

1

n!
(2)

d

dx
ex = ex (3)

15

d

dx

∫ x

0

f(t)dt = f(x) (4)

f(x) =

∞∑
i=0

f (i)(0)

i!
xi (5)

x−
√
x2 − 1 =

1

x+
√
x2 − 1

(6)

t− sin t

1 + sin t

∣∣∣∣π/2
0

=
π

2
− 1 (7)

If you need help, send email to your instructor, or look at the .tex file of this workbook.

5 Tables and matrices

5.1 The tabular command

The tabular command is used to typeset tables. By default, LATEX tables are drawn without
horizontal and vertical lines — you need to specify if you want lines drawn. LATEX determines
the width of the columns automatically.

This code starts a table:

\begin{tabular}{...}

Where the dots between the curly brackets are replaced by code defining the columns:

• l for a column of left-aligned text (letter el, not number one).

• r for a column of right-aligned text.

• c for a column of centre-aligned text.

• | for a vertical line.

For example, {lll} (i.e. left left left) will produce 3 columns of left-aligned text with no
vertical lines , while {|l|l|r|} (i.e. |left|left|right|) will produce 3 columns — the first 2
are left-aligned, the third is right-aligned, and there are vertical lines around each column.

The table data follows the \begin command:

16

• & is placed between columns.

• \\ is placed at the end of a row (to start a new one).

• \hline inserts a horizontal line.

• \cline{1-2} inserts a partial horizontal line between column 1 and column 2.

The command \end{tabular} finishes the table.

Examples of tabular code (on the left) and the resulting tables (on the right):

• A table with three rows and three columns and without lines. The three columns are
aligned left, center, and right, respectively.

\begin{tabular}{lcr}

10 & 20 & 30 \\

4 & 5 & 6\\

700 & 800 & 900

\end{tabular}

10 20 30
4 5 6
700 800 900

• The same table with two vertical lines:

\begin{tabular}{l|c|r}

10 & 20 & 30 \\

4 & 5 & 6\\

700 & 800 & 900

\end{tabular}

10 20 30
4 5 6
700 800 900

• Now we add horizontal lines at the top and bottom:

\begin{tabular}{l|c|r}

\hline

10 & 20 & 30 \\

4 & 5 & 6\\

700 & 800 & 900

\hline

\end{tabular}

10 20 30
4 5 6
700 800 900

• This is the same table with all possible vertical and horizontal lines:

\begin{tabular}{|l|c|r|}

\hline

10 & 20 & 30 \\

\hline

4 & 5 & 6\\

\hline

700 & 800 & 900

\hline

\end{tabular}

10 20 30
4 5 6
700 800 900

• This is an example with a partial horizontal line:

17

\begin{tabular}{|r|l|}

\hline

apple & green\\

banana & yellow \\ \cline{2-2}

blackberry& black \\

\hline \hline

tomato & red \\

\hline

\end{tabular}

apple green
banana yellow

blackberry black

tomato red

Exercise 2. Write code to produce the following tables:

1.

Item Quantity Price (in $)
Brush 3 5.50
Canvas 5 24.75
Oil paint 8 15.00

2.

Year
City 2016 2017 2018
New York 45789 49099 50023
Chicago 43087 45777 48891
Los Angeles 48677 47898 51234

5.2 The array command

The tabular command is used in text mode. If some entries of a table are math expressions,
and we are using the tabular command, we need to use math mode for each of the entries
with the math expressions. So for example in order to produce the table

Function Domain Range
f(x) = x2 (−∞,∞) [0.∞)
g(x) =

√
x [0,∞) [0,∞)

h(x) = x (−∞,∞) (−∞,∞)

using the tabular command, we would need to use the code:

\begin{tabular}{c|c|c}

Function & Domain & Range\\

\hline

$f(x)=x^2$ & $(-\infty,\infty)$ & $[0.\infty)$\\

$g(x)=\sqrt{x}$ & $[0,\infty)$ & $[0,\infty)$\\

$h(x)=x$ & $(-\infty,\infty)$ & $ (-\infty,\infty)$

\end{tabular}

Note how many times we had to type $. But there is a better way: the array command
is the equivalent of tabular. It is used in exactly the same way, but in math mode. This
means that using array, the code for the previous table becomes:

18

$$\begin{array}{c|c|c}

\mbox{Function} & \mbox{Domain} & \mbox{Range}\\

\hline

f(x)=x^2 & (-\infty,\infty) & [0.\infty)\\

g(x)=\sqrt{x} & [0,\infty) & [0,\infty)\\

h(x)=x & (-\infty,\infty) & (-\infty,\infty)

\end{array}$$

This time we did not have to use $ for the many math entries. But we had to use \mbox{ }

for the few text entries. So it should be clear what the best strategy is: if a table contains
mostly text entries, use the tabular command, with math mode $...$ for each of the few
math entries. If instead the table contains mostly math entries, use the array command,
with \mbox{...} for the few text entries.

⇒ Check that the code using the array command gives exactly the same output as the
code using the tabular command

5.3 Matrices

A matrix is nothing but an array of (usually) numbers or other math expressions. So it can
clearly be done using the array command. In fact, the matrix(

0 1
1 1

)
can be produced with the code
$$\left(\begin{array}{cc} 0 & 1 \\ 1 & 1 \end{array}\right)$$

But, there is a better way: if we add the package \usepackage{amsmath} in the preamble,
the commands \begin{pmatrix} ... \end{pmatrix} (in math mode) will automatically
insert the parentheses (so we do not need to type the \left(and \right) commands), and
we do not need to know or keep track of how many columns the matrix is going to have. So
the argument {cc} is not needed, and the above matrix can be produced with the simpler
code
$$\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$$

Exercise 3. Add \usepackage{amsmath} on a line before \begin{document}. Then write
the code to produce the following output1 0 0

0 cos θ − sin θ
0 sin θ cos θ



19

5.4 Piecewise defined functions

A piecewise defined function such as

f(x) =

{
x2 + 1 if x ≤ 2

1− 3x if x > 2

is similar to a table or an array, and uses the commands \begin{cases} ...\end{cases}.
The code to produce the above output is:

$$f(x) = \begin{cases} x^2+1 \mbox{ if } x\leq 2\\

1-3x \mbox{ if } x>2\end{cases}$$

Note the use of \mbox in order to write the word ‘if’.

6 Figures

This section describes how to insert an image in your LATEX document, which requires the
graphicx package. Images should be PDF, PNG, JPEG or GIF files. The following code
will insert an image called myimage:

\begin{figure}[h]

\centering

\includegraphics[width=1\textwidth]{myimage}

\caption{Here is my image}

\label{image-myimage}

\end{figure}

[h] is the placement specifier. h means put the figure approximately here (if it will fit).
Other options are t (at the top of the page), b (at the bottom of the page) and p (on a
separate page for figures). You can also add !, which overrides the rule LATEX uses for
choosing where to put the figure, and makes it more likely it will put it where you want
(even if it doesn’t look so good).

\centering centers the image on the page, if not used images are left-aligned by default.
It’s a good idea to use this as the figure captions are centerd.

\includegraphics{...} is the command that actually puts the image in your document.
The image file should be saved in the same folder as the .tex file.

[width=1\textwidth] is an optional command that specifies the width of the picture - in
this case the same width as the text. The width could also be given in centimeters (cm).
You could also use [scale=0.5] which scales the image by the desired factor, in this case
reducing by half.

\caption{...} defines a caption for the figure. If this is used LATEX will add “Figure” and
a number before the caption. If you use captions, you can use \listoffigures to create a
table of figures in a similar way to the table of contents (section 2.6, page 6).

20

\label{...} creates a label to allow you to refer to the table or figure in your text (section
2.5, page 6).

Exercise 4. ⇒ Add \usepackage{graphicx} in the preamble of your document (before
the \begin{document} command).

⇒ Upload an image file to your CoCalc account, in the same directory as the .tex file.

⇒ Type the following text at the point where you want your image inserted:

\begin{figure}[h!]

\centering

\includegraphics[width=1\textwidth]{ImageFilename}

\caption{My test image}

\end{figure}

Replace ImageFilename with the name of your image file, excluding the file extension. If
there are any spaces in the file name enclose it in quotation marks, for example "screen 20".

⇒ Click on Build button and check the PDF.

7 Inserting References

LATEX includes features that allow you to easily cite references and create bibliographies in
your document. The code

\begin{thebibliography}{1}

\bibitem{Sage} J. Harris, K. Kohl, J. Perry,

\textit{Peering into Mathematics through Sage-colored Glasses},

Lulu.com, 2016.

\bibitem{LM} L. Lamport, \textit{\LaTeX\ a document preparation

system: user’s guide and reference manual},

Addison-Wesley Longman Publishing Co., Inc. Boston, MA,

USA \copyright 1994

\end{thebibliography}

will produce the following output at the end of your document:

References

[1] J. Harris, K. Kohl, J. Perry, Peering into Mathematics through Sage-colored Glasses,
Lulu.com, 2016.

[2] L. Lamport, LATEX a document preparation system: user’s guide and reference manual,
Addison-Wesley Longman Publishing Co., Inc. Boston, MA, USA ©1994

In \bibitem{Sage} the curly braces contain the label used to reference the book, and the
command to insert the citation is \cite{Sage}. So the code

21

The book \cite{Sage} provides a good introduction

to the computer algebra system SAGE.

will produce the output

The book [1] provides a good introduction to the computer algebra system SAGE.

and the code

Leslie Sampert’s manual \cite{LM} is time tested

and authoritative reference for \LaTeX.

will produce the output: Leslie Sampert’s manual [2] is a time tested and authoritative
reference for LATEX.

To include a page number in your in-text citation put it in square brackets before the citation
key: \cite[p. 215]{Sage} produces [1, p. 215].

To cite multiple references include all the citation keys within the curly brackets separated
by commas: \cite{Sage, LM} produces [1, 2].

7.1 Exercise

⇒ Create a bibliography in your document that lists two of your textbooks from this (or
last) semester.

⇒ Add some content in your document that references the two books, for example you
can write

The book \cite{book1} was hard to understand,

and the book \cite{book2} was too heavy to carry

where book1 and book2 are the labels you chose for the two books.

⇒ Click on Build and check the PDF file.

8 Further Reading

LATEX Project
http://www.latex-project.org/

Official website - has links to documentation, information about installing LATEX on your
own computer, and information about where to look for help.

The Not So Short Introduction to LATEX2e
http://ctan.tug.org/tex-archive/info/lshort/english/lshort.pdf

A good tutorial for beginners.

LATEX Wikibook
http://en.wikibooks.org/wiki/LaTeX/

22

http://www.latex-project.org/
http://ctan.tug.org/tex-archive/info/lshort/english/lshort.pdf
http://en.wikibooks.org/wiki/LaTeX/

Comprehensive and clearly written, although still a work in progress. A downloadable PDF
is also available.

Comparison of TEX Editors on Wikipedia
http://en.wikipedia.org/wiki/Comparison_of_TeX_editors

Information to help you to choose which LATEX editor to install on your own computer.

TeX Live
http://www.tug.org/texlive/

“An easy way to get up and running with the TeX document production system”. Available
for Unix and Windows (links to MacTeX for MacOSX users). Includes the TeXworks editor.

Workbook Source Files
The .tex file that was used to produce this workbook is in your CoCalc account.

23

http://en.wikipedia.org/wiki/Comparison_of_TeX_editors
http://www.tug.org/texlive/

	Introduction
	Document Structure
	Typesetting Text
	Equations
	Tables and matrices
	Figures
	Inserting References
	Further Reading

