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Abstract

The Prime Number Theorem states that the number of prime numbers
less than x is asymptotic to x/ log x as x becomes large. Its proof was a
crowning achievement of 19th century mathematics, and led to the devel-
opment of a vast amount of mathematics ever since. So understanding the
classical proof is more than just of historical interest. This article details
a minimal path to that first classical proof.

1 Introduction

The first complete proof of the Prime Number Theorem was given (indepen-
dently) by Hadamard and de la Vallé Poussin in 1896 [4], [1]. It was the cul-
mination of work by many of the leading mathematicians of the 18th and 19th
centuries such as Euler, Chebyshev, Riemann and von Mangoldt.

Many simpler and ”elementary” proofs of the theorem have been produced
in the following 128 years [3, 8, 5, 9]. However, the ideas involved in the classical
proof have been responsible for the development of a large amount of 20th and
21st century mathematics. In particular, Riemann’s short and legendary 1859
paper [7] can be rightly considered to be the birth of Analytic Number Theory.

This article describes the first complete proof of the theorem. H. Edwards’s
masterly historical account [2] traces (in the first four chapters) the development
of the proof from Riemann’s 1859 paper until the final steps by Hadamard and
de la Vallé Poussin in 1896, and it provides the main reference work for this
article. While Edwards’s account is focussed on the theory of the Riemann zeta
function, the present article aims at providing a minimal path to the proof of
the Prime Number Theorem.

Section 2 consists of five theorems and six propositions that summarize the
important steps needed in the proof. No proofs of the results are given, but the
logical dependence of the various steps is outlined.

Section 3 provides full proofs of Theorems 1,2 and 5. For Theorem 3 (the
product expansion for ξ(s)) and Theorem 4 (the analytic formula for ψ(x) and
its antiderivative), an outline is given, consisting of several lemmas, just like
Section 2 provides an outline for the Prime Number Theorem.
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Section 4 provides full proofs of the six propositions. Section 5 provides the
proofs of the lemmas needed for the proofs of Theorems 3 and 4. Notes in the
appendix provide background material and proofs of standard facts quoted in
the proofs. A web based version of this article is available at
https://vdeangel.xula.edu/PNT.html

2 Outline

2.1 Statement of the Prime Number Theorem

Let π(x) be the prime counting function

π(x) = |{p : p is prime and p ≤ x}|.

For positive functions f(x) and g(x), the notation f(x) ∼ g(x) means that
f(x)/g(x)→ 1 as x→∞. The Prime Number Theorem states that

π(x) ∼ Li(x),

where

Li(x) = lim
ε→0+

(∫ 1−ε

0

dt

log t
+

∫ x

1+ε

dt

log t

)
.

It is easy to see that Li(x) ∼ x/ log x, so an equivalent statement of the Prime
Number Theorem is π(x) ∼ x/ log x.

2.2 Chebyshev’s function

The prime counting function π(x) arises from the point measure dπ(t) that
assigns weight 1 to prime numbers and 0 to every other number. Let dθ(t) =
(log t)dπ(t). The corresponding function

θ(x) =
∑
p<x

log p

(where the sum is over the prime numbers) is Chebyshev’s function. We assume
by convention that the values of step functions such as this at the points of
discontinuity are defined to be the average of their left and right limits. The
next proposition shows that in order to prove the PNT, it is enough to derive
the asymptotic behavior of θ(x).

Proposition 1.
θ(x) ∼ x implies π(x) ∼ Li(x).

2



2.3 von Mangoldt’s function

The function θ(x) is constructed using prime numbers only. If we also include
prime powers, we get von Mangoldt’s function

ψ(x) =
∑
pn<x

log p =
∑
n<x

Λ(n),

where the first sum is over all prime powers pn, and

Λ(n) =

{
log p if n is a prime power pm

0 if n is not a prime power
.

von Mangoldt’s function has a very useful connection with the infinite sum

ζ(s) =

∞∑
n=1

1

ns
, Re(s) > 1. (1)

The connection is via Euler’s product formula [A1]

ζ(s) =
∏
p

(
1− 1

ps

)−1
, Re(s) > 1,

that is the heart of the Prime Number Theorem. Let dψ(t) be the point measure
corresponding to ψ(t), that assigns weight log p to prime powers pn, and zero
to all other numbers.

Proposition 2.

− ζ ′(s)

ζ(s)
=

∫ ∞
0

dψ(x)

xs
=

∞∑
n=2

1

ns
Λ(n), Re(s) > 1 (2)

Equation (2) can be considered a re-statement in Stieltjes integral form of
Euler’s product formula.

2.4 The PNT from ψ(x) ∼ x

The heart of the proof of the Prime Number Theorem consists in exploiting
equation (2) to derive the asymptotic estimates

ψ(x) ∼ x.

Once that is done, the Prime Number Theorem is a consequence of the following
simple result.

Proposition 3.
ψ(x) ∼ x implies θ(x) ∼ x.
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2.5 Extension of ζ(s)

So we have now reduced the proof of the PNT to the derivation of the asymptotic
behavior of ψ(x). This is where complex analysis comes in. The function ζ(s) in
(1) is Riemann’s zeta function, that had been used by Euler mostly for integer
values of s, and later by Dirichlet for real values s > 1.

The crucial connection (2) between the prime numbers and ζ(s) can now
be exploited using Riemann’s new and far reaching idea that ζ(s) extends an-
alytically to a meromorphic function with just a simple pole at s = 1, and
then using complex function theory to derive results on the prime numbers.
Riemann’s work in this area can be considered the birth of Analytic Number
Theory.

In order to state the next theorem, we introduce the extension of the factorial
[Appendix B]

Π(s) =

∞∏
k=1

(
1 +

s

k

)−1(
1 +

1

k

)s
(3)

that was already known to Euler. Π(s) is defined and analytic for all s except
the negative integers, and Π(n) = n! if n is a non-negative integer. A more
common (but less natural) notation for it is Γ(s) = Π(s− 1).

Theorem 1. For each s 6= 1, define

ζ(s) =
Π(−s)

2πi

∫
C

(−z)s

ez − 1

dz

z
, (4)

where C = C(δ, ε) is the Hankel path that starts at a small distance ε above
the positive real axis at infinity, circles counterclockwise around the origin with
radius δ > ε, and returns to infinity traveling at distance ε below the positive
real axis (see picture below).

The Hankel path

Then ζ(s) is a meromorphic function with a simple pole at s = 1, and it coincides
with the previous definition for Re(s) > 1. Moreover, ζ(−2n) = 0 for all positive
integers n.
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The first few values of ζ(s) are:

n 0 −1 −2 −3 −4 −5

ζ(n) −1

2
− 1

12
0

1

120
0 − 1

252

The zeros at s = −2n are called the trivial zeros. But ζ(s) has many other zeros,
which we will denote by ρ, that are crucial in understanding the distribution of
prime numbers. The Riemann hypothesis, proposed in his 1859 paper, is that
all the non-trivial zeros ρ of ζ(s) have Re(ρ) = 1/2.

2.6 The function ξ(s)

So the zeta function contains information about the prime numbers. But in
order to extract it in the most efficient way, we now strip ζ(s) of some inessential
information. First of all we multiply it by s − 1 in order to make it an entire
function. Then we multiply it by Π(s/2) in order to eliminate the trivial zeros
at the negative even integers. At this point we would be left with an entire
function without real zeros (because as the next theorem shows Im(ρ) 6= 0 for
all ρ). An additional simple factor of π−s/2 will turn it into the function that
plays a central role in the proof of the PNT, and that is described in the next
theorem.

Theorem 2. Let
ξ(s) = (s− 1)Π

(s
2

)
π−s/2ζ(s).

Then:

(a) ξ(s) is entire.

(b) ξ(s) satisfies the functional equation

ξ(1− s) = ξ(s). (5)

(c) ξ(s) has no zeros outside the strip 0 ≤ Re(s) ≤ 1.

(d) ξ(s) is an even function of s − 1/2, and the coefficients of the Taylor
expansion of ξ(s) at s = 1/2 are positive real numbers. In particular, ξ(s)
has no zeros on the real axis.

Note that as a consequence of the functional equation (5), the zeros of ξ(s)
will occur in pairs (ρ, 1− ρ).

2.7 The product expansion for ξ(s)

Riemann had the insight that the function ξ(s) admits an infinite product ex-
pansion whose factors are 1 − s/ρ, where ρ are the zeros of ξ(s), and that this
infinite product expansion is the key to the derivation of the information about
the prime numbers.
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This product expansion (that essentially says that ξ(s) behaves like an in-
finite degree polynomial) is similar to Euler’s expansion for sin(πs) in terms of
factors 1 − s2/n2. But Riemann did not prove his statement in his short 1859
paper. He simply stated that the Taylor series for ξ(s) around s = 1/2 converges
”very rapidly”. A rigorous proof of the product expansion for ξ(s) (described in
the next theorem) was given by Hadamard about 30 years later, and it was the
first major progress towards a rigorous proof of the PNT following Riemann’s
1859 paper. The proof of this theorem occupies a whole chapter in Edwards’
book.

Theorem 3. The function ξ(s) has a product expansion

ξ(s) = ξ(0)
∏
ρ

(
1− s

ρ

)
,

where the product is over all the zeros ρ of ξ(s), and the zeros ρ, 1 − ρ are
assumed to be paired, so that the product is

ξ(s) = ξ(0)
∏

Im(ρ)>0

(
1− s(1− s)

ρ(1− ρ)

)
.

2.8 The integral I(b)

The next important step was the derivation of an analytic formula for ψ(x).
This was achieved by von Mangoldt in 1895. His strategy was to evaluate the
integral

1

2πi

∫ a+i∞

a−i∞

(
−ζ
′(s)

ζ(s)

)
xs
ds

s

(where a > 1) in two different ways. The first is to substitute the expression for
−ζ ′(s)/ζ(s) given by (2) and obtain ψ(x). The second is to use the definition
of ξ(s) and its product expansion to write

ξ(0)
∏
ρ

(
1− s

ρ

)
= Π

(s
2

)
π−s/2(s− 1)ζ(s), (6)

take the logarithmic derivative, and substitute the resulting expression for
−ζ ′(s)/ζ(s) (given in the next proposition) in the integral to obtain an analytic
formula. However, von Mangoldt’s derivation of the asymptotic behavior of ψ(x)
for large x depends on first deriving the asymptotic behavior of the antiderivative∫ x

0

ψ(t)dt.

To derive a formula for the antiderivative we will evaluate the integral

1

2πi

∫ a+i∞

a−i∞

(
−ζ
′(s)

ζ(s)

)
xs

ds

s+ 1
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in a similar way. In order to combine the two very similar derivations, we
consider the integral

I(b) =
1

2πi

∫ a+i∞

a−i∞

(
−ζ
′(s)

ζ(s)

)
xs

ds

s+ b
, (7)

where b is a non-negative real number.

2.9 The formula for −ζ ′(s)/ζ(s)
Taking the logarithmic derivative of (6) and using the product representation
(3) for Π(s), we derive the formula for ζ ′(s)/ζ(s) given in the next proposition.
Beside routine calculations, the proof only requires checking that the infinite
series involved can be differentiated termwise.

Proposition 4. Let b be a non-negative real number. Then

− ζ ′(s)

ζ(s)
=

∞∑
n=1

s+ b

(2n− b)(2n+ s)
+

s+ b

(s− 1)(1 + b)
+
∑
ρ

s+ b

(ρ+ b)(ρ− s)
− ζ ′(−b)
ζ(−b)

.

(8)

2.10 The formulas for ψ(x) and
∫ x

0
ψ(t)dt

The next theorem gives analytic formulas for ψ(x) and
∫ x
0
ψ(t)dt. The proof of

this theorem also occupies a significant part of a chapter of Edwards’ book. But
it should be noted that if we ignore the fact that taking a limit inside an integral
or an infinite sum must be justified, the proof amounts to routine calculations
obtained by substituting (2) and (8) in (7). In this respect, a substantial part
of the classical proof of the PNT could be described as the task of proving that
some limits can be switched. Probably the most difficult part of the proof of this
theorem is proving that when substituting (8) into (7), the term of (8) involving
the roots ρ of ξ(s) results in the limit

lim
h→∞

∑
|Im(ρ)|≤h

xρ

ρ+ b
. (9)

This was done by von Mangoldt, and he was only able to prove that the infinite
series converges when the terms are arranged in increasing order of |Im(ρ)|.

Theorem 4.

ψ(x) = I(0) = x− ζ ′(0)

ζ(0)
+

∞∑
n=1

x−2n

2n
− lim
h→∞

∑
|Im(ρ)|≤h

xρ

ρ∫ x

0

ψ(t)dt = xI(0)− xI(1)

=
x2

2
− xζ ′(0)

ζ(0)
+
ζ ′(−1)

ζ(−1)
−
∞∑
n=1

x1−2n

2n(2n− 1)
− lim
h→∞

∑
|Im(ρ)|≤h

xρ+1

ρ(ρ+ 1)
(10)
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2.11 Re(ρ) < 1

The last significant step in the derivation of the asymptotic behavior of ψ(x)
(and so the proof of the PNT) is the proof that ζ(s) has no zeros on the line
Re(s) = 1. This was proved by both Hadamard and de la Valleé Poussin
independently in 1896.

Theorem 5.
If ρ is a zero of ζ(s), then Re(ρ) < 1 (11)

2.12 The asymptotic estimate for
∫ x

0
ψ(t)dt

From (10) and (11), it is easy to derive the asymptotic estimate for the an-
tiderivative of ψ(x).

Proposition 5. ∫ x

0

ψ(t)dt ∼ x2

2
as x→∞. (12)

2.13 The asymptotic estimate for ψ(x)

The asymptotic behavior of ψ(x) (and hence the Prime Number Theorem) now
follows from the following general result on the antiderivative of a positive,
increasing function.

Proposition 6. Suppose that f is positive and increasing, and∫ x

0

f(t)dt ∼ x2

2
as x→∞.

Then
f(x) ∼ x as x→∞.

3 Proofs of the theorems

3.1 Proof of Theorem 1

The starting point is the extension of the factorial (3). The integral represen-
tation

Π(s) =

∫ ∞
0

e−sxsdx. (13)

valid for Re(s) > −1, was also known to Euler. Using (13) with s replaced by
s− 1, making the substitution x 7→ nx, and summing over n ≥ 1, we obtain the
integral representation ∫ ∞

0

xs−1

ex − 1
dx = Π(s− 1)

∞∑
n=1

1

ns
, (14)
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valid for s > 1.
In view of the integral representation (14), Riemann considers the contour

integral ∫
C

(−z)s

ez − 1

dz

z
,

where the integral is along the Hankel path C = C(δ, ε) that starts at distance
ε above the positive real axis at infinity, circles counterclockwise around the
origin with radius δ > ε, and returns to infinity traveling at distance ε below
the positive real axis (see figure below).

The Hankel path C(δ, ε)

It is not hard to see that the integral does not depend on the values of ε and
δ (as long as they are small enough so that no singularities are enclosed). This
can be proved by truncating the path at x = R for some large R, then joining
it via vertical segments to a similar path C(δ1, ε1), where δ1 < δ, ε1 < ε, in
order to form a closed contour without singularities inside, so that by Cauchy’s
theorem the integral will be zero, then let R→∞ and notice that the integral
over the vertical segments will go to zero. This will prove that the integral over
C(δ, ε) is the same as the integral over C(δ1, ε1).

On L+ we have −z = −x − iε and log(−x − iε) → log |z| − iπ as ε → 0,
while on L−, −z = −x + iε, and log(−x + iε) → log |z| + iπ as ε → 0. So

the integral over L+ approaches e−iπs
∫ ∞
0

xs

ex − 1

dx

x
and the integral over L−

approaches eiπs
∫ ∞
0

xs

ex − 1

dx

x
as ε, δ → 0. Also, if we write z = δeiθ on C0, the

integrand is bounded by
δs

|eδeiθ − 1|
=

δs−1

|eiθ +O(δ)|
and so the integral over C0

will approach zero as long as Re(s) > 1. So we conclude that, for Re(s) > 1,∫
C

(−z)s

ez − 1

dz

z
= 2i sin(πs)

∫ ∞
0

xs

ex − 1

dx

x
= 2i sin(πs)ζ(s)Π(s− 1).

But the left side of this equation is an entire function of z. Using standard
identities for the factorial function, this leads to the definition of the Riemann
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zeta function as in the statement of the theorem:

ζ(s) =
Π(−s)

2πi

∫
C

(−z)s

ez − 1

dz

z
.

The integral on the right side defines an entire function. So the only singularities
can come from the simple poles of Π(−s) at the positive integers. But for
s = 2, 3, 4, . . . the function coincides with

∑
n≥1 1/ns, so the simple poles of

Π(−s) must be cancelled by zeros of the integral, while at s = 1 we know that∑
n≥1 1/ns diverges, so there must be a simple pole (with residue 1) coming

from Π(−s). So formula (4) defines a function for all complex values of s except
s = 1, where it has a simple pole, and it coincides with the previous definition
for Re(s) > 1.

The Maclaurin expansion

x

ex − 1
=

∞∑
n=0

Bn
n!
xn

introduces the Bernoulli numbers Bn in the evaluation of ζ(s). For s = −n,
n = 0, 1, 2, 3, . . ., the integrals over L+ and L− will cancel each other, and the
integral over L0 as δ, ε→ 0 can easily be evaluated to obtain

ζ(−n) = (−1)n
Bn+1

n+ 1
.

In particular, since Bn = 0 for n odd and greater than 1, we find ζ(−2n) = 0
for all positive integers n.

3.2 Proof of Theorem 2

(a) Formula (14) in the proof of Theorem 1 that led to the analytic continu-
ation of ζ(s) from s > 1 to the whole complex plane (except s = 1) was
obtained by substituting nx for x in the integral representation (13) for
Π(s− 1), and then summing over n. If we instead make the substitution
x 7→ n2πx in the integral representation for Π(s/2− 1) and sum, we find

Π
(s

2
− 1
)
π−s/2ζ(s) =

∫ ∞
0

φ(x)xs/2
dx

x
, (15)

where

φ(x) =

∞∑
n=1

e−πn
2x.

The function φ(x) is related to the Jocobi theta function

G(u) = ϑ(0; iu2) =
∑
n∈Z

e−πn
2u2

by
2φ(u2) + 1 = G(u)
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and so the functional equation for the theta function [D1] uG(u) = G(1/u)
for G(u) gives

φ(x) =
1√
x
φ

(
1

x

)
+

1√
x
− 1

2
. (16)

Differentiation of this identity gives

φ(1) + 4φ′(1) +
1

2
= 0. (17)

By splitting the integral (15) from 0 to 1 and 1 to ∞, and then using the
functional equation (16), some routine calculations give

Π
(s

2
− 1
)
π−s/2ζ(s)

=

∫ ∞
1

φ(x)
(
xs/2 + x(1−s)/2

) dx
x
−
(

1

s
+

1

1− s

)
. (18)

The integral on the right side of (18) is an entire function of s. So mul-
tiplying the equation by s(s− 1)/2 we get an entire function, denoted by
ξ(s):

ξ(s) = (s− 1)Π
(s

2

)
π−s/2ζ(s)

=
1

2
− s(1− s)

2

∫ ∞
1

φ(x)
(
xs/2 + x(1−s)/2

) dx
x
. (19)

The right side of (19) is invariant under s → 1− s, and so we obtain the
functional equation

ξ(s) = ξ(1− s).

(b) We show that ζ(s) (and hence ξ(s)) has no zeros for Re(s) > 1. Let s ∈ C
with σ = Re(s) > 1, and let (pn : n ≥ 1) be the prime numbers. Let
an = (psn − 1)−1, so that 1 + an = (1− p−sn )−1. Since

∞∑
n=1

|an| =
∞∑
n=1

1

|psn − 1|
≤
∞∑
n=2

1

nσ − 1
<∞,

we conclude from basic results on infinite products [Appendix C] that

∞∑
n=1

log(1 + an) = log

∞∏
n=1

(
1− 1

psn

)−1
= L ∈ C,

and so

ζ(s) =

∞∏
n=1

(
1− 1

psn

)−1
= eL 6= 0.

Using the functional equation ξ(s) = ξ(1 − s) it follows that ξ(s) has no
zeros outside 0 ≤ Re(s) ≤ 1.¡br/¿¡br/¿
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(c) Using the estimates

φ(x) =

∞∑
n=1

e−πn
2x ≤

∞∑
n=1

e−πnx =
1

eπx − 1

and

|φ′(x)| = π

∞∑
n=1

n2e−πn
2x ≤ π

∞∑
n=1

n2e−πnx = πe−πx
1 + e−πx

(1− e−πx)3
,

we see that for every s,

|xsφ(x)| → 0 and |xsφ′(x)| → 0 as x→∞.

Integrating (19) by parts twice and using (17) we then find

ξ(s) = 2

∫ ∞
1

(
xs/2−1/2 + x−s/2

)(
x3/2φ′(x)

)′
dx

= 4

∫ ∞
1

x−1/4 cosh

(
1

2

(
s− 1

2

)
log x

)(
x3/2φ′(x)

)′
dx.

Using the Maclaurin expansion for cosh, this gives

ξ(s) =

∞∑
n=0

cn

(
s− 1

2

)2n

,

or

ξ

(
1

2
+ it

)
=

∞∑
n=0

(−1)ncnt
2n,

where

cn =
4

(2n)!

∫ ∞
1

x−1/4
(

log x

2

)2n (
x3/2φ′(x)

)′
dx.

We find

d

dx

(
x3/2φ′(x)

)
= πx1/2

∞∑
n=1

n2
(
πxn2 − 3

2

)
e−πn

2x

and so all coefficients cn are positive.

3.3 Proof of Theorem 3

It is reasonable to expect that in order to prove that a product∏
ρ

(
1− s

ρ

)
converges we need to have an estimate of how many zeros ρ there are. The first
step in the proof will be to put a bound on the growth of ξ(s), as described in
the next result.
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Lemma 1. For all large enough R and |s− 1/2| ≤ R, we have |ξ(s)| ≤ RR.
This will be used to provide the estimate on the number of zeros.

Lemma 2. For R > 0, let n(R) be the number of zeros of ξ(s) such that
|s− 1/2| ≤ R. Then n(R) ≤ 3R logR for all large enough R.

The above estimate of the number of zeros of ξ(s) allows us to prove the
next result.

Lemma 3. Let ρk : k = 1, 2, 3, . . . be the zeros of ξ(s) ordered so that |ρk−1/2| ≤
|ρk+1 − 1/2|. Let ε > 0 be given. Then the series

∞∑
k=1

1

|ρk − 1/2|1+ε

converges, and so in particular the infinite product

P (s) =

∞∏
k=1

(
1− (s− 1/2)2

(ρ− 1/2)2

)
converges.

The infinite product P (s) has exactly the same zeros as ξ(s). We will show
that in fact it is the same as ξ(s), up to a multiplicative constant. Our main tool
is the next result from complex analysis, that can be thought of as an analogue
of Liouville’s theorem when an entire function is also even.

Lemma 4. Suppose that f(s) is entire and even and for each ε > 0, Re(f(s)) ≤
ε|s|2 for all large enough |s|. Then f(s) is a constant function.

The next result provides the asymptotic estimate needed to make use of
Lemma 4. Its proof depends on the estimate given by Lemma 1

Lemma 5. Let ε > 0 be given. Then for all large enough |s− 1/2|,

Re log
ξ(s)

P (s)
≤
∣∣∣∣s− 1

2

∣∣∣∣1+ε .
We can now derive the product expansion for ξ(s) by applying Lemma 4 to

the function F (s) = ξ(s)/P (s).

3.4 Proof of Theorem 4

We will often need to consider the integral

Fh(x, β) =
1

2πi

∫ a+ih

a−ih

xs−β

s− β
ds

where a > 0, x > 0, h > 0 and β is a complex number with a > Re(β). The next
lemma describes the rate of convergence of Fh(x, 0) as h → ∞, and it will be
used to justify taking limits inside integrals or infinite series. These estimates
are derived by evaluating the integral along suitable large rectangles and making
use of the residue theorem.
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Lemma 6.

Fh(1, 0) =
1

π
tan−1

(
h

a

)
If 0 < x < 1, then |Fh(x, 0)| ≤ xa

πh| log x|
. (20)

If x > 1, then |Fh(x, 0)− 1| ≤ xa

πh log x
. (21)

In particular,

lim
h→∞

1

2πi

∫ a+ih

a−ih
xs
ds

s
=


0 if 0 < x < 1
1
2 if x = 1

1 if x > 1

, a > 0. (22)

The next two lemmas are simple consequences of the above estimates. They
will be needed to justify taking some limits inside integrals.

Lemma 7.

If x > 1 and a > Re(β), then lim
h→∞

Fh(x, β) = 1.

Lemma 8. Suppose x > 1, d > c ≥ 0. Then∣∣∣∣∣ 1

2πi

∫ a+id

a+ic

xs

s
ds

∣∣∣∣∣ ≤ K xa

(a+ c) log x
, where K =

√
2

(
1

π
+

1

4

)
.

The next lemma is obtained by carrying out the first substitution of−ζ ′(s)/ζ(s)
in I(b), as mentioned in section 2.8, using equation (2).

Lemma 9.
I(0) = ψ(x) =

∑
n<x

Λ(n) (23)

I(1) =
1

x

∑
n<x

nΛ(n) (24)

The analytic formulas for ψ(x) and its antiderivative will now be derived by
substituting formula (8) into I(b). There are four terms in (8). The calculations,
and the switching of infinite sums and integral, will be relatively straightforward
for all terms except the one involving the sum of the roots ρ. That term will
produce the limit

lim
h→∞

∑
ρ

xρ

ρ+ b
Fh(x, ρ),

because the infinite series (that is locally uniformly convergent) can be inte-
grated termwise on finite paths. So we know that the limit exists, since all
other terms in the formula obtained by substituting (8) into I(b) exist. But the

14



difficult part (as mentioned earlier) will be in proving that the same limit is
equal to

lim
h→∞

∑
|Im(ρ)≤h

xρ

ρ+ b
.

One ingredient of the proof is the estimate of the vertical density of the
roots of ξ(s) given in the next lemma. Note that this formula can be considered
a refinement of the formula for n(R) given in Lemma 2, because it is easy to
derive that formula if we have the vertical density estimate. But the proof of
the vertical density given in the next lemma depends on the product formula
for ξ(s), and the formula for n(R) was needed in order to prove the product
formula. We will also need Stirling’s formula for Π(s), and in fact it will be
necessary to use not just the dominant term, but also the fact that the relative
error is of order 1/|s| for large |s|.

Lemma 10. Let D(T ) be the number of roots of ξ(s) with imaginary part be-
tween T and T + 1. Then

D(T ) ≤ 2 log T for all large T. (25)

The last step in the proof of Theorem 4 is the derivation of the term that
results from the sum involving the roots of ξ(s) when substituting (8) into I(b).
The main idea in von Mangoldt’s proof is to split the difference∑

ρ

xρ

ρ+ b
Fh(x, ρ)−

∑
|Im(ρ)|≤h

xρ

ρ+ b

as

∑
ρ

xρ

ρ+ b
Fh(x, ρ)−

∑
|Im(ρ)|≤h

xρ

ρ+ b
Fh(x, ρ)


+

 ∑
|Im(ρ)|≤h

xρ

ρ+ b
Fh(x, ρ)−

∑
|Im(ρ)|≤h

xρ

ρ+ b


and then use the estimate for D(T ) to prove that the differences in both paren-
theses go to zero as h → ∞. The term that is added and subtracted is what
Edwards calls a ”diagonal” term.

Lemma 11.

lim
h→∞

∑
ρ

xρ

ρ+ b
Fh(x, ρ) = lim

h→∞

∑
|Im(ρ)|≤h

xρ

ρ+ b

15



We are now ready to substitute (8) into (7). Since the series in (8) converge
locally uniformly, we can integrate them termwise over finite paths and we find

1

2πi
lim
h→∞

∫ a+ih

a−ih

(
−ζ
′(s)

ζ(s)

)
xs

ds

s+ b

=
1

2πi
lim
h→∞

∫ a+ih

a−ih

(
s+ b

(s− 1)(1 + b)
− ζ ′(−b)
ζ(−b)

+

∞∑
n=1

s+ b

(2n− b)(2n+ s)

+
∑
ρ

s+ b

(ρ+ b)(ρ− s)

)
xs

ds

s+ b

=
1

2πi(1 + b)

∫ a+i∞

a−i∞

xs

s− 1
ds+

1

2πi

∫ a+i∞

a−i∞

(
−ζ
′(−b)
ζ(−b)

)
xs

ds

s+ b

+ lim
h→∞

∞∑
n=1

1

(2n− b)
1

2πi

∫ a+ih

a−ih

xs

s+ 2n
ds+ lim

h→∞

∑
ρ

1

(ρ+ b)

1

2πi

∫ a+ih

a−ih

xs

ρ− s
ds

=
x

1 + b
− x−b ζ

′(−b)
ζ(−b)

+ lim
h→∞

∞∑
n=1

1

(2n− b)
1

2πi

∫ a+ih

a−ih

xs

s+ 2n
ds

+ lim
h→∞

∑
ρ

1

(ρ+ b)

1

2πi

∫ a+ih

a−ih

xs

ρ− s
ds

where we have used Lemma 7 to evaluate the first two terms. We now need to
show that we can switch the limit with the two infinite series. First consider
the series in n. We will show that the it converges uniformly in h. We find∫ a+ih

a−ih

xs+2n

s+ 2n
ds =

∫ h

0

(
xa+2n+iy

a+ 2n+ iy
+

xa+2n−iy

a+ 2n− iy

)
dy

= 2Re

∫ h

0

xa+2n+iy

a+ 2n+ iy
dy = 2Re

∫ a+2n+ih

a+2n

xt

t
dt

and so using Lemma 8,∣∣∣∣∣
∫ a+ih

a−ih

xs+2n

s+ 2n
ds

∣∣∣∣∣ ≤ 2

∣∣∣∣∣
∫ a+2n+ih

a+2n

xt

t
dt

∣∣∣∣∣ ≤ Kxa+2n

(a+ 2n) log x

for a constant K. It follows that the n-th term of the series in n is bounded by
c/n2 for a constant c independent of h. So the series converges uniformly in h,
and it follows from Lemma 7 that

lim
h→∞

∞∑
n=1

1

2n− b
1

2πi

∫ a+ih

a−ih

xs

s+ 2n
ds =

∞∑
n=1

1

2n− b
1

2πi

∫ a+i∞

a−i∞

xs

s+ 2n
ds =

∞∑
n=1

x−2n

2n− b
.

So we have now shown that

I(b) =
x

1 + b
− x−b ζ

′(−b)
ζ(−b)

+

∞∑
n=1

x−2n

2n− b
− lim
h→∞

∑
ρ

xρ

ρ+ b
Fh(x, ρ) (26)
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and using Lemma 11 we obtain the formula for I(b)

I(b) =
x

1 + b
− x−b ζ

′(−b)
ζ(−b)

+

∞∑
n=1

x−2n

2n− b
− lim
h→∞

∑
|Im(ρ)|≤h

xρ

ρ+ b
.

Setting b = 0 we find, according to (23), van Mangoldt’s formula for ψ(x)

I(0) = ψ(x) = x− ζ ′(0)

ζ(0)
+

∞∑
n=1

x−2n

2n
− lim
h→∞

∑
|Im(ρ)≤h

xρ

ρ

= x− ζ ′(0)

ζ(0)
+

1

2
log

(
x2

x2 − 1

)
− lim
h→∞

∑
|Im(ρ)≤h

xρ

ρ

while setting b = 1 we find, according to (24),

I(1) =
1

2x

∑
n<x

nΛ(n) +
∑
n≤x

nΛ(n)


=

x

2
− ζ ′(−1)

xζ(−1)
+

∞∑
n=1

x−2n

2n− 1
− lim
h→∞

∑
|Im(ρ)≤h

xρ

ρ+ 1

and the formula for the antiderivative of ψ(x) follows by computing xI(0) −
xI(1).

3.5 Proof of Theorem 5

Let F (s) =
∑
p

1

ps
, for Re(s) > 1. We claim that F (σ) + log(σ − 1) is bounded

as σ → 1+. Using the representation

Π(s) = lim
n→∞

n!(n+ 1)s

(s+ 1) · · · (s+ n)

we find
lim
s→1

(s− 1)Π(−s) = −1.

Since
1

2πi

∫
C

−z
ez − 1

dz

z
= −1

(where C is the Hankel path from Chapter 1), we find from the integral repre-
sentation

ζ(s) =
Π(−s)

2πi

∫
C

(−z)s

ez − 1

dx

z

that
lim
s→1

(s− 1)ζ(s) = 1.
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As a consequence of Euler’s product formula [A2], we find

log ζ(s) = F (s) +B(s), |B(s)| ≤ 1

2
for Re(s) > 1.

So
log((σ − 1)ζ(σ)) = log(σ − 1) + F (σ) +B(σ)→ 0 as σ → 1+

and the claim follows.
Suppose now t 6= 0 is such that ζ(1 + it) = 0. Let δ > 0 be such that

1− cos δ > 0 and cos(2δ) > 0. Consider the set

A = {p prime : |(2n+ 1)π − t log p| < δ for some n ∈ Z}

Let

F1(σ) =
∑
p∈A

1

pσ
, F2(σ) =

∑
p 6∈A

1

pσ
, σ > 1.

Since ζ(s)/(s−1− it) is analytic, using s = σ+ it we find that ζ(σ+ it)/(σ−1)
is bounded as σ → 1+, and so Re log ζ(σ + it) − log(σ − 1) is bounded. This
implies

ReF (σ + it)− log(σ − 1) =
∑
p

cos(t log p)

pσ
− log(σ − 1) is bounded as σ → 1+.

If p 6∈ A, then cos(t log p) ≥ 1− cos(δ), and so∑
p

cos(t log p)

pσ
≥ −

∑
p∈A

1

pσ
− cos(δ)

∑
p 6∈A

1

pσ
= −F1(σ)− cos(δ)F2(σ).

Hence

−F1(σ)−cos(δ)F2(σ)−log(σ−1) ≤
∑
p

cos(t log p)

pσ
−log(σ−1) is bounded as σ → 1+.

(27)
According to the claim,

F (σ) + log(σ − 1) = F1(σ) + F2(σ) + log(σ − 1) is bounded as σ → 1+. (28)

Adding (27) and (28), we find

(1− cos(δ))F2(σ) is bounded as σ → 1+.

So we conclude that F2(σ) is bounded as σ → 1+. But ζ(s) is analytic at
s = 1 + 2it, and so ReF (σ + 2it) is bounded as σ → 1+. If p ∈ A, then
|2(2n+ 1)π − 2t log p| < 2δ for some n, and so cos(2t log p) ≥ cos(2δ). So

ReF (σ + 2it) ≥ cos(2δ)F1(σ)− F2(σ)

implies that F1(σ) is also bounded as σ → 1+. But this contradicts the fact
that F (σ) = F1(σ) + F2(σ) is unbounded as σ → 1+.
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4 Proofs of the propositions

4.1 Proof of Proposition 1

Let dθ be the point measure that assigns weight log p to prime p. Then∫ x

0

dθ(t)

log t
=
∑
p<x

log p

log p
= π(x).

So for x < y,

π(y)− π(x) =

∫ y

x

dθ(t)

log t
=
θ(y)

log y
− θ(x)

log x
+

∫ y

x

θ(t)

(
− 1

log t

)′
dt. (29)

Suppose that θ(x) ∼ x for large x. Let ε > 0 be given, and take x large
enough so that

(1− ε)x < θ(x) < (1 + ε)x.

Then from (29) we find

π(y)− π(x) ≤ 2ε
x

log x
+ (1 + ε)

y

log y
− (1 + ε)

x

log x
+ (1 + ε)

∫ y

x

t

(
− 1

log t

)′
dt

= 2ε
x

log x
+ (1 + ε)

t

log t

∣∣∣∣y
x

− (1 + ε)
t

log t

∣∣∣∣y
x

+ (1 + ε)

∫ y

x

dt

log t

= 2ε
x

log x
+ (1 + ε)(Li(y)− Li(x)).

So we find

π(y)

Li(y)
≤ π(x)

Li(y)
+

2εx

Li(y) log x
− (1 + ε)

Li(x)

Li(y)
+ 1 + ε.

For a fixed x, when y is large enough, we get

π(y)

Li(y)
≤ 1 + 2ε.

In a similar way,
π(y)

Li(y)
≥ 1− 2ε.

So we conclude that

lim
x→∞

π(x)

Li(x)
= 1.
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4.2 Proof of proposition 2

By definition, ∫ ∞
0

dψ(x)

xs
=

∞∑
n=2

1

ns
Λ(n).

The zeta function

ζ(s) =

∞∑
n=1

1

ns
, Re(s) > 1

converges locally uniformly for Re(s) > 1, and using Euler’s product formula
we obtain by logarithmic differentiation

−ζ
′(s)

ζ(s)
=
∑
p

log p

ps − 1
=
∑
p

log p

∞∑
n=1

p−sn =
∑
n=2

1

ns
Λ(n) =

∫ ∞
0

1

xs
dψ, Re(s) > 1.

4.3 Proof of Proposition 3

Suppose that ψ(x) ∼ x as x→∞. Note that

ψ(x) =

∞∑
n=1

θ
(
x1/n

)
,

and the sum is finite, because θ
(
x1/n

)
is zero as soon as 2n > x. Since θ(x) = 0

for n > log x/ log 2, and θ(x) ≥ θ
(
x1/n

)
for n ≥ 2, we find

ψ(x) ≤ θ(x) +
log x

log 2
θ
(
x1/2

)
.

So

ψ(x)−
θ
(
x1/2

)
log x

log 2
< θ(x) < ψ(x). (30)

Note that since ψ(x) ∼ x, if ε > 0,

θ(x)

x1+ε
≤ ψ(x)

x1+ε
→ 0 as x→∞.

So for small ε > 0,

θ
(
x1/2

)
log x

x
=

θ
(
x1/2

)(
x1/2

)1+ε log x(
x1/2

)1−ε → 0 as x→∞.

Dividing (30) by x, we conclude that

lim
x→∞

θ(x)

x
= 1.
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4.4 Proof of Proposition 4

Taking the logarithmic derivative of (6), and using the product formula (3) for
Π(s), we find

− ζ ′(s)

ζ(s)
=

∞∑
n=1

[
1

2
log

(
1 +

1

n

)
− 1

2n+ s

]
− 1

2
log π +

1

s− 1
+
∑
ρ

1

ρ− s
. (31)

Subtracting from (31) the same equation evaluated at s = −b, we find (8).
To justify the pointwise differentiation of infinite series, it is enough to show

that the two infinite series in (31) converge locally uniformly. We find

1

2
log

(
1 +

1

n

)
− 1

2n+ s
=

1

2n2

∞∑
k=0

(−1)k

nk

(
sk+1

2k+1
− 1

k + 2

)
and so ∣∣∣∣12 log

(
1 +

1

n

)
− 1

2n+ s

∣∣∣∣ ≤ c

n2

for some constant c, all s in a compact set, and all large enough n. This proves
that the pointwise differentiation of the first series is justified.

For the second series, we need to pair terms with ρ and (1 − ρ). Then we
find

1

s− ρ
+

1

s− (1− ρ)
=

2(s− 1/2)

(s− 1/2)2 − (ρ− 1/2)2

and so ∣∣∣∣ 1

s− ρ
+

1

s− (1− ρ)

∣∣∣∣ ≤ K

|ρ− 1/2|2

for a constant K, s in a compact set, and |ρ − 1/2| large enough. Then the
series converges by Lemma 3 .

4.5 Proof of Proposition 5

From (10), we find

1

x2

(∫ x

0

ψ(t)dt− x2

2

)
= − ζ

′(0)

xζ(0)
+
ζ ′(−1)

x2ζ(−1)
−
∞∑
n=1

x−2n−1

2n(2n− 1)
− lim
h→∞

∑
|Im(ρ)≤h

xρ−1

ρ(ρ+ 1)

Since this last series in ρ now converges absolutely and uniformly in x, we can
evaluate the limit as x→∞ termwise and since Re(ρ)− 1 < 0, we find

lim
x→∞

1

x2

(∫ x

0

ψ(t)dt− x2

2

)
= 0.
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4.6 Proof of Proposition 6

Write F (x) =

∫ x

0

f(t)dt. Let ε > 0 be given. Then for large enough x,

(1− ε)x
2

2
≤ F (x) ≤ (1 + ε)

x2

2
.

If x is large enough and y = βx, where β > 1, we have

(1− ε)y
2

2
≤ f(y)(y − x) + (1 + ε)

x2

2
= (y − x)f(y) + (1− ε)x

2

2
+ εx2,

and then we find

1

2
(1− ε)(y2 − x2) ≤ (y − x)f(y) + εx2

and using y = βx,

f(y)

y
≥ 1

2
(1− ε)β + 1

β
− ε

β(β − 1)
.

Hence

lim inf
x→∞

f(x)

x
≥ 1

2
(1− ε)β + 1

β
− ε

β(β − 1)
.

Letting ε go to zero, we find

lim inf
x→∞

f(x)

x
≥ β + 1

2β
,

and letting β approach 1,

lim inf
x→∞

f(x)

x
≥ 1.

In a similar way, we find

f(x)

x
≤ 1

2
(1− ε)(β + 1) + ε

β2

β − 1

and so

lim sup
x→∞

f(x)

x
≤ 1

2
(1− ε)(β + 1) + ε

β2

β − 1
.

Letting ε go to zero, we find

lim sup
x→∞

f(x)

x
≤ β + 1

2
,

and then letting β approach 1,

lim sup
x→∞

f(x)

x
≤ 1 ≤ lim inf

x→∞

f(x)

x
.

So we conclude that

lim
x→∞

f(x)

x
= 1.
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5 Proofs of the lemmas

5.1 Proof of Lemma 1

According to Theorem 2 d., the coefficients cn for the power series of ξ as an
even function of s − 1/2 are positive real numbers. Hence if |s − 1/2| ≤ R, we
find

|ξ(s)| =

∣∣∣∣∣
∞∑
n=0

cn

(
s− 1

2

)2n
∣∣∣∣∣ ≤

∞∑
n=0

cn

∣∣∣∣s− 1

2

∣∣∣∣2n ≤ ∞∑
n=0

cnR
2n = ξ(R+ 1/2).

For a fixed R > 0, let N ∈ N be such that

1

4
+
R

2
≤ N <

1

4
+
R

2
+ 1.

Recall that
ξ(s) = (s− 1)Π

(s
2

)
π−s/2ζ(s).

Since ξ(t) =

∞∑
n=0

cn(t− 1/2)2n is increasing for t real and t ≥ 1/2, we have

ξ

(
1

2
+R

)
≤ ξ(2N) = (2N − 1)Π(N)π−Nζ(2N) ≤ (2N)N !ζ(2)

≤ 2ζ(2)NN+1 ≤ 2ζ(2)

(
1

4
+
R

2
+ 1

)1/4+R/2+2

≤ RR

for R large enough.

5.2 Proof of Lemma 2

If R > 0 and f is a function defined and analytic for |z| ≤ R and with f(0) 6= 0,
let

Z(f ;R) = {z ∈ C : f(z) = 0 and |z| < R}

Z0(f ;R) = {z ∈ C : f(z) = 0 and |z| ≤ R}.

Then Z0(f ;R) ⊂ Z(f ; 2R). If z ∈ Z(f ; 2R), then 2R/|z| > 1, so log(|2R/z|) >
0, and we find∑

z∈Z(f ;2R)

log

∣∣∣∣2Rz
∣∣∣∣ ≥ ∑

z∈Z0(f ;R)

log

∣∣∣∣2Rz
∣∣∣∣ ≥ log(2)|Z0(f ;R)|,
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because 2R/|z| ≥ 2 for z ∈ Z0(f ;R). If f has no zeros on the circle |z| = 2R,
Jensen’s formula [Appendix F] applies and we find

log |f(0)|+ log(2)|Z0(f ;R)| ≤ log |f(0)|+
∑

z∈Z(f ;2R)

log

∣∣∣∣2Rz
∣∣∣∣

= log

|f(0)|
∏

z∈Z(f ;2R)

2R

|z|


=

1

2π

∫ 2π

0

log
∣∣f(2Reiθ)

∣∣ dθ. (32)

Now let f(z) = ξ(z + 1/2). Then n(R) = |Z0(f ;R)|, and by Lemma 1, we find∣∣f (2Reiθ)∣∣ =

∣∣∣∣ξ(1

2
+ 2Reiθ

)∣∣∣∣ ≤ (2R)
2R
.

If ξ has no zeros on the circle |s− 1/2| = 2R, we find from (32)

log

∣∣∣∣ξ(1

2

)∣∣∣∣+ log(2)n(R) ≤ 2R log(2R) = 2R logR+ 2R log(2),

or

n(R) ≤ 2

log 2
R logR+ 2R− log |ξ(1/2)|

log 2

Let R0 be such that the right side of the above inequality is ≤ 3R logR for
R ≥ R0. So n(R) ≤ 3R logR if R ≥ R0 and there are no zeros on the circle
|s−1/2| = 2R. If R ≥ R0 and there are some zeros on the circle |s−1/2| = 2R,
we can find some εR > 0 such that f has no zeros on |s − 1/2| = 2(R + ε) for
all 0 < ε ≤ εR, and then

n(R) ≤ n(R+ ε) ≤ 3(R+ ε) log(R+ ε)

for all 0 < ε ≤ εR. Letting ε → 0, we find n(R) ≤ 3R logR. So the inequality
holds for all R ≥ R0.

5.3 Proof of Lemma 3

Define Rn implicitly by 4Rn logRn = n. Then if n(R) is as defined in the
previous lemma, we find n(Rn) ≤ 3Rn logRn = 3n/4 < n. This means that the
n-th zero is outside the circle of radius Rn centered at 1/2, so |ρn − 1/2| > Rn,
and

1

|ρn − 1/2|1+ε
<

1

R1+ε
n

=
(4 logRn)1+ε

n1+ε
=

(4 logRn)1+ε

n1+ε/2
1

n1+ε/2
.

Since logRn < log 4 + logRn + log logRn = log(4Rn logRn) = log n, we find

(4 logRn)1+ε

n1+ε/2
<

(4 log n)1+ε

n1+ε/2
< 1
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for large n, and so
1

|ρn − 1/2|1+ε
<

1

n1+ε/2

holds for all large enough n, and the series

∞∑
n=1

1

|ρn − 1/2|1+ε
converges.

5.4 Proof of Lemma 4

The proof depends on the following result, that provides a bound on |f(s)| on
a disk |s| ≤ r if we are given a bound for Ref(s) on a larger disk |s| ≤ R.

Lemma A Suppose f(s) is analytic on |s| ≤ R, f(0) = 0, and r < R. If
Ref(s) ≤M for |s| ≤ R, then

|f(s)| ≤ 2Mr

R− r
for |s| ≤ r.

Proof of Lemma A. Write f(s) = u(s) + iv(s). Since u(s) is harmonic, its
maximum on |s| ≤ R is achieved at the boundary. Let

φ(s) =
f(s)

s(2M − f(s))

Note that
u− 2M ≤ u ≤M ≤ 2M − u,

and so
|u(s)| ≤ 2M − u(s).

Then we find

|2M − f(s)|2 = (2M − u(s))2 + v(s)2 ≥ u(s)2 + v(s)2 = |f(s)|2.

Hence

|φ(s)| ≤ 1

|s|
=

1

R
on |s| ≤ R.

Then

|f(s)| =
∣∣∣∣ 2Msφ(s)

1 + sφ(s)

∣∣∣∣ ≤ 2Mr/R

1− r/R
=

2Mr

R− r
on |s| ≤ r.�

To prove Lemma 4, suppose that f(s) is entire and even, and for every ε > 0,
Ref(s) ≤ ε|s|2 for large enough |s|. Assume first f(0) = 0. Write

f(s) =
∑
n=2

ans
n.

Then given r > 0 and using Lemma A with R = 2r, we find

|an| =

∣∣∣∣∣ 1

2πi

∫
|s|=r

f(reiθ

sn+1
ds

∣∣∣∣∣ ≤ 1

2π

∫ 2π

0

|f(reiθ)|
rn

dθ ≤ 1

2π

ε4r2

rn
=

2ε

πrn−2
.

Since n ≥ 2 and ε is arbitrary, we must have an = 0.
If f(0) 6= 0, we can consider g(s) = f(s) − f(0), that satisfies the same

growth condition, and conclude that f(s) = f(0).
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5.5 Proof of Lemma 5

To prove Lemma 5 we will make use of three lemmas.

Lemma B If |z| ≤ 1/2, then −Re log(1− z) ≤ 2|z|.
Proof of Lemma B.

− log(1− z) =

∫ z

0

dw

1− w
.

So

−Re log(1− z) = Re

∫ z

0

dw

1− w

≤
∣∣∣∣∫ z

0

dw

1− w

∣∣∣∣ ≤ |z|max

{
1

|1− w|
: |w| ≤ 1

2

}
≤ 2|z| �

Lemma C Suppose an ≥ 0, and

∞∑
n=1

an converges. For t > 0, let A(t) =

{n ∈ N : an ≤ t}. Then

lim
t→0+

∑
n∈A(t)

an = 0.

Proof of Lemma C. Let ε > 0. Find m such that

∞∑
n=m

an < ε. If an = 0

for 1 ≤ n ≤ m, then
∑

n∈A(t)

an ≤
∞∑
n=m

an < ε. Otherwise, let δ = min{an : an >

0, 1 ≤ n ≤ m}. Suppose t < δ. If n ≤ m, then either an = 0, or an ≥ δ > t, and
then n 6∈ A(t), so ∑

n∈A(t)

an ≤
∞∑
n=m

an < ε �

Lemma D Suppose zn is such that for every ε > 0,

∞∑
n=1

1

|zn|1+ε
converges.

For R > 0 and s ∈ C, let

vR(s) = Re log
1∏

|zn|≥2R

(
1− s2

z2n

) .

Then given ε > 0, if |s| = R and R is large enough, vR(s) ≤ R1+ε.
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Proof of Lemma D. Let ε > 0, and suppose |s| = R. Then

vR(s) = −Re
∑
|zn|≥2R

log

(
1− s2

z2n

)

≤ 2
∑
|zn|≥2R

R2

|zn|2
from Lemma B

= 2
∑
|zn|≥2R

(
R

|zn|

)1−ε(
R

|zn|

)1+ε

≤ 2

(
1

2

)1−ε ∑
|zn|≥2R

(
R

|zn|

)1+ε

= 2εR1+ε
∑
|zn|≥2R

(
1

|zn|

)1+ε

.

From Lemma C, the sum will go to zero as R → ∞, so vR(s) ≤ R1+ε when
|s| = R and R is large enough.�

To prove Lemma 5, consider the function

F (s) =
ξ(s)

P (s)
. (33)

For each zero ρ of ξ(s), the factor 1 − (s − 1/2)/(ρ − 1/2) = 2(s − ρ)/(1 − 2ρ)
in the product P (s) will cancel the zero of ξ(s) at ρ, and so F (s) is entire and
without zeros. Fix R > 0, and write

AR(s) =
∏

|ρ−1/2|≤2R

(
1−

(
s− 1/2

ρ− 1/2

)2
)
,

BR(s) =
∏

|ρ−1/2|>2R

(
1−

(
s− 1/2

ρ− 1/2

)2
)
,

so that P (s) = AR(s)BR(s). Then on the disk |s − 1/2| ≤ R, ξ(s)/AR(s) is
analytic and has no zeros, because the zeros of ξ(s) are cancelled by those of
AR(s) , and 1/BR(s) is analytic, because all the zeros of BR are in |s−1/2| > 2R.
So we can consider

uR(s) = Re log
ξ(s)

AR(s)
= log

|ξ(s)|∏
|ρ−1/2|≤2R

∣∣∣∣1− (s− 1/2)2

(ρ− 1/2)2

∣∣∣∣ .

vR(s) = Re log
1

BR(s)
= log

1∏
|ρ−1/2|>2R

∣∣∣∣1− (s− 1/2)2

(ρ− 1/2)2

∣∣∣∣ ,
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both defined and harmonic on |s− 1/2| ≤ R, and

uR(s) + vR(s) = Re logF (s).

Now consider uR(s) on |s−1/2| ≤ 4R. Then uR is harmonic there except at
the points s = ρ with 2R < |ρ−1/2| ≤ 4R. But at those points uR(s)→ −∞. If
we draw closed disks of small radius ε around each point of the finite set of zeros
of ξ(s) in the disk |s − 1/2| ≤ 4R, then uR is harmonic on the same disk with
those small disks removed, and so it will achieve its maximum on the boundary.
By taking the radius of the disks small enough, since u→ −∞ on the boundary
of each small disk, we conclude that the maximum of u is achieved on the circle
|s− 1/2| = 4R. But if |s− 1/2| = 4R, then for |ρ− 1/2| ≤ 2R, we have∣∣∣∣1− s− 1/2

ρ− 1/2

∣∣∣∣ ≥ ∣∣∣∣ s− 1/2

ρ− 1/2

∣∣∣∣− 1 =
4R

|ρ− 1/2|
− 1 ≥ 4R

2R
− 1 = 1.

So each factor in the denominator has absolute value at least 1, and

max{uR(s) : |s− 1/2| = R}
≤ max{uR(s) : |s− 1/2| ≤ 4R} = max{uR(s) : |s− 1/2| = 4R

≤ max{log |ξ(s)| : |s− 1/2| = 4R}
≤ log(4R)4R = 4R log(4R) ≤ R1+ε (34)

for large R.
We now prove the same inequality for vR(s). By taking zn = ρ − 1/2 in

Lemma D, we find that for all ε > 0,

vR(s) = Re log
1

BR(s)
= log

1∏
|ρ−1/2|>2R

∣∣∣∣1− (s− 1/2)2

(ρ− 1/2)2

∣∣∣∣ ≤ R
1+ε (35)

for |s − 1/2| = R and all large R. Let now ε > 0 be given, and let F (s) =
ξ(s)/P (s) as given in (33). From (34) and (35), we find Re logF (s) = uR(s) +
vR(s) ≤ 2|s−1/2|1+ε/2 ≤ |s−1/2|1+ε for large enough |s−1/2|. So we conclude
that

Re logF (s) ≤
∣∣∣∣s− 1

2

∣∣∣∣1+ε
for all large enough |s− 1/2|.

5.6 Proof of Lemma 6

Fh(1, 0) =
1

2πi

∫ a+ih

a−ih

ds

s
=

1

2π

∫ h

−h

a− it
a2 + t2

dt =
a

2π

∫ h

−h

dt

a2 + t2
=

1

π
tan−1

(
h

a

)
.
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If 0 < x < 1, consider the integral over the rectangle shown:

The integral over the closed path is zero, because the integrand is analytic inside.
The integral over the top or bottom sides of the rectangle are easily seen to be
bounded by

1

2π

xK − xa

h| log x|
,

and the integral on the right side is bounded by

1

2π

xK

K
(2h).

Letting K →∞, we find

|Fh(x, 0)| =

∣∣∣∣∣ 1

2πi

∫ a+ih

a−ih

xs

s
ds

∣∣∣∣∣ ≤ xa

πh| log x|
.

If x > 1, consider the integral over the rectangle:

The integrand has a simple pole at s = 0, and the integral over the closed path
is 1. The integral over the top or bottom is bounded by

1

2π

xa − x−K

h log x
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and the integral over the left side is bounded by

1

2π

2h

KxK
.

Letting K →∞, we find the bound

|Fh(x, 0)− 1| =

∣∣∣∣∣ 1

2πi

∫ a+ih

a−ih

xs

s
ds− 1

∣∣∣∣∣ ≤ xa

πh log x
.

5.7 Proof of Lemma 7

Consider the integral
1

2πi

∫ a+i∞

a−i∞
xs

ds

s− β
,

where x > 1, β = σ + iτ and a > σ. Let t = s− β. Then∫ a+ih

a−ih
xs

ds

s− β
= xβ

∫ a−σ+i(h−τ)

a−σ−i(h+τ)
xt
dt

t
= xβ

∫ a−σ+i(h+τ)

a−σ−i(h+τ)
xt
dt

t
+xβ

∫ a−σ+i(h−τ)

a−σ+i(h+τ)
xt
dt

t
.

The limit of the first term as h → ∞ is 2πixβ , by (22). For the second term,
we find∣∣∣∣∣xβ

∫ a−σ+i(h−τ)

a−σ+i(h+τ)
xt
dt

t

∣∣∣∣∣ ≤ xa−σ max

{
1√

(a− σ)2 + y2
: h− τ ≤ y ≤ h+ τ

}
2τ

≤ 2τxa−σ

h− τ
→ 0 as h→∞.

So we conclude that

1

2πi

∫ a+i∞

a−i∞
xs

ds

s− β
= xβ , x > 1, a > Re(β).

5.8 Proof of Lemma 8

Integrating by parts we find∫ a+id

a+ic

xs

s
ds =

xa+id

(a+ id) log x
− xa+ic

(a+ ic) log x
+

ixa

log x

∫ d

c

xit

(a+ it)2
dt. (36)

Using the inequality √
a2 + c2 ≥ a+ c√

2
,

we find

|a+ id| ≥ |a+ ic| ≥ a+ c√
2
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and so the first two terms on the right side of (36) are bounded by

xa
√

2

(a+ c) log x
.

The integral on the right side of (36) is bounded by∣∣∣∣∣
∫ d

c

xit

(a+ it)2
dt

∣∣∣∣∣ ≤
∫ ∞
0

du

a2 + (c+ u)2
≤
∫ ∞
0

du

a2 + c2 + u2
=

1√
a2 + c2

π

2
≤
√

2

a+ c

π

2
.

So we conclude that ∣∣∣∣∣ 1

2πi

∫ a+id

a+ic

xs

s
ds

∣∣∣∣∣ ≤ K xa

(a+ c) log x
,

where

K =
√

2

(
1

π
+

1

4

)
.

5.9 Proof of Lemma 9

Let x > 2 be fixed, and m = dxe, a > 1. Then for each h > 0,

1

2πi

∫ a+ih

a−ih

(
−ζ
′(s)

ζ(s)

)
xs

ds

s+ b
=

1

2πi

∫ a+ih

a−ih

∞∑
n=2

Λ(n)
xs

ns
ds

s+ b

=
1

2πi

∫ a+ih

a−ih

m−1∑
n=2

Λ(n)
(x
n

)s ds

s+ b
+ Λ(m)

1

2πi

∫ a+ih

a−ih

( x
m

)s ds

s+ b

+
1

2πi

∫ a+ih

a−ih

∞∑
n=m+1

Λ(n)
(x
n

)s ds

s+ b
.

The first term involves a finite sum and its limit as h→∞ is

m−1∑
n=2

Λ(n)
1

2πi

∫ a+i∞

a−i∞

(x
n

)s ds

s+ b
=

m−1∑
n=2

Λ(n)
nb

2πixb

∫ a+b+i∞

a+b−i∞

(x
n

)t dt
t

=
1

xb

m−1∑
n=2

nbΛ(n) =
1

xb

∑
n<x

nbΛ(n),

where we have used (22). In a similar way, the limit of the second term is

Λ(m)
1

2
[x = m].

So if b = 0, the sum of the first two terms gives

1

2

∑
n<x

Λ(n)+
1

2

∑
n<x

Λ(n)+ frac12Λ(n)[n = x] =
1

2

∑
n<x

Λ(n) +
∑
n≤x

Λ(n)

 = ψ(x),
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while if b = 1 we get

1

2x

∑
n<x

nΛ(n) +
∑
n≤x

nΛ(n)


For the third term, since the series converges uniformly on any halfplane Re(s) ≥
a > 1, we can integrate termwise on finite paths. Using Λ(n) ≤ log(n) and the
estimate (20) we find∣∣∣∣∣

∫ a+ih

a−ih

∞∑
n=m+1

Λ(n)
(x
n

)s ds

s+ b

∣∣∣∣∣
≤

∞∑
n=m+1

Λ(n)
nb

xb

∣∣∣∣∣
∫ a+b+ih

a+b−ih

(x
n

)t dt
t

∣∣∣∣∣
≤

∞∑
n=m+1

Λ(n)
xa

naπh log(1 + 1/x)
≤ 1

h

∞∑
n=m+1

c

na

for some constant c. So the limit of the third term is zero as h → ∞. This
proves that

I(0) =
1

2πi

∫ a+i∞

a−i∞

(
−ζ
′(s)

ζ(s)

)
xs
ds

s
= ψ(x) =

∑
n<x

Λ(n)

and

I(1) =
1

2πi

∫ a+i∞

a−i∞

(
−ζ
′(s)

ζ(s)

)
xs

ds

s+ 1
=

1

x

(∑
n<x

nΛ(n)

)
.

5.10 Proof of Lemma 10

We first prove a lemma that will be needed in order to put an upper bound on
the number of roots ρ in a horizontal strip of height 1.

Lemma E Let ρ = σ + iτ be a root of ζ(s) with 0 ≤ σ ≤ 1, and let T ≥ 0.
Then

(a) Im

∫ 2+i(T+1)

2+iT

ds

s− ρ
≥ 0

(b) If T ≤ τ ≤ T + 1, then Im

∫ 2+i(T+1)

2+iT

ds

s− ρ
≥ tan−1

(
1

2

)
Proof From a geometric point view, part (a) follows from the fact that the left
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side is the angle θ2 − θ1 in the following picture,

and part (b) from the fact that in case T ≤ τ ≤ T + 1, the same angle is at
least the angle ϕ in the following picture.

(a) Let s = ρ + reiθ. Then (using Cauchy’s theorem to replace the segment
[2 + iT, 2 + i(T + 1)] with an arc centered at ρ), we find

Im

∫ 2+i(T+1)

2+iT

ds

s− ρ
= θ2 − θ1,

where

tan θ1 =
T − τ
2− σ

<
T + 1− τ

2− σ
= tan θ2.

So θ1 < θ2.
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(b) Let s = 2 + i(u+ T ), ρ = σ + i(b+ T ). Then 0 ≤ σ ≤ 1, 0 ≤ b ≤ 1, and

Im

∫ 2+i(T+1)

2+iT

ds

s− ρ
= Im

∫ 1

0

idu

2− σ + i(u− b)

= Im i

∫ 1

0

2− σ − i(u− b)idu
(2− σ)2 + (u− b)2

=

∫ 1

0

2− σ
(2− σ)2 + (u− b)2

= tan−1
b

2− σ
− tan−1

b− 1

2− σ

= tan−1
2− σ

(2− σ)2 + b(b− 1)

Now the lemma follows from the fact that the inequality σ(2−σ)+b(1−b) ≥
0 is equivalent to

2− σ
(2− σ)2 + b(b− 1)

≥ 1

2
�

Since the Hadamard product

ξ(s) = ξ(0)
∏
ρ

(
1− s

ρ

)
was shown to converge locally uniformly, we can take the logarithmic derivative
and then integrate termwise over finite paths. So using Lemma E, we find

Im

∫ 2+i(T+1)

2+iT

ξ′(s)

ξ(s)
ds = Im

∑
ρ

∫ 2+i(T+1)

2+iT

ds

s− ρ
≥

∑
T≤Im(ρ)≤T+1

∫ 2+i(T+1)

2+iT

ds

s− ρ

≥ D(T ) tan−1
(

1

2

)
. (37)

So we can get an upper bound forD(T ) from an upper bound for Im

∫ 2+i(T+1)

2+iT

ξ′(s)

ξ(s)
ds.

This is done in the next lemma.
We denote by O(s0) any function f(s) that remains bounded as |s| → ∞.

Lemma F For T ≥ 0, we have∫ 2+i(T+1)

2+iT

ξ′(s)

ξ(s)
ds =

i

2
log T +O(T 0).

Proof. We will use the Stirling’s approximation

Π(s) = sse−s
√

2πs

(
1 +

O(s0)

s

)
.
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From the definition of ξ(s), we find

ξ(s) =

5∏
k=0

fk(s)

where

f0(s) =
(s

2

)s/2
f1(s) = (eπ)−s/2

f2(s) =
√
πs

f3(s) = (s− 1)

f4(s) = ζ(s)

f5(s) =

(
1 +

O(s0)

s

)

For any non-zero differentiable function f(s), let L(f)(s) =
f ′(s)

f(s)
. Then L(fg) =

L(f) + L(g). So we find

L(ξ)(s)) =

5∑
k=0

L(fk)(s),

and we need to show that

5∑
k=0

∫ 2+i(T+1)

2+iT

L(fk)(s)ds =
i

2
log T +O(T 0).

We will show that all terms in the sum with k > 0 are bounded as T → ∞,
while the term with k = 0 is (i/2) log T +O(T 0). For k = 1, we have

L
(

(eπ)−s/2
)

= −1

2
log(eπ)

and so ∫ 2+i(T+1)

2+iT

L(f1)(s)ds = − i
2

log(eπ)

For k = 2,

L(
√
πs) =

1

2s
,

and ∫ 2+i(T+1)

2+iT

L(f2)(s)ds =
1

2
log

(
1 +

i

2 + iT

)
= O(T 0).
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For k = 3,

L(s− 1) =
1

s− 1
,

and ∫ 2+i(T+1)

2+iT

L(f3)(s)ds = log

(
1 +

i

1 + iT

)
= O(T 0).

For k = 4,

L(ζ(s)) =
d

ds
log ζ(s)

and for Re(s) = 2,

| log ζ(2 + it)| =

∣∣∣∣∣∑
p

∞∑
n=1

1

n

1

p2n+nit

∣∣∣∣∣ ≤∑
p

∞∑
n=1

1

n

1

p2n
= log ζ(2),

so ∫ 2+i(T+1)

2+iT

L(f4)(s)ds = O(T 0).

For k = 5,∫ 2+i(T+1)

2+iT

L(f5)(s)ds = log

(
1 +

O(s0)

s

)∣∣∣∣2+i(T+1)

2+iT

= O(T 0).

For k = 0, ∫
L
(s

2

)s/2
=

1

2
s log

(s
2

)
=

1

2
s log s− 1

2
s log 2,

and
s log 2

2

∣∣∣∣2+i(T+1)

2+iT

= O(T 0).

So it remains to show that

1

2
s log s

∣∣∣∣2+i(T+1)

2+iT

=
1

2
i log T +O(T 0).

This is easily seen from the computation

(2 + i(T + 1)) log(2 + i(T + 1))− (2 + iT ) log(2 + iT )

= (2 + iT ) log(2 + i(T + 1)) + i log(2 + i(T + 1))− (2 + iT ) log(2 + iT )

= (2 + iT ) log

(
1 +

i

2 + iT

)
+ i log(2 + i(T + 1))

= O(T 0) + i log(2 + i(T + 1))

= i log T +O(T 0) �
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Combining Lemma F and (37), we find that for large T ,

D(T ) ≤ log T

2 tan−1(1/2)
+ c ≤ 1.1 log T + c

for some constant c, and so

D(T ) ≤ 2 log T for all large T �

5.11 Proof of Lemma 11

Note that |Fh(ρ)| = |Fh(ρ̄)|. Write ρ = β + iγ. We will consider the first two
and the last two terms of (26) separately.

For the first two terms, we find∣∣∣∣∣∣
∑
ρ

xρ

ρ+ b
Fh(ρ)−

∑
|Im(ρ)|≤h

xρ

ρ+ b
Fh(ρ)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑

|Im(ρ)|>h

xρ

ρ+ b
Fh(ρ)

∣∣∣∣∣∣
≤

∑
γ>h

xβ

γ
|Fh(β + iγ)|+

∑
γ<−h

xβ

|γ|
|Fh(β + iγ)|

=
∑
γ>h

xβ

γ
|Fh(β + iγ)|+

∑
γ>h

xβ

γ
|Fh(β − iγ)|

= 2
∑
γ>h

xβ

γ
|Fh(β − iγ)|

Since 0 ≤ Re(ρ) ≤ 1, and a > 1, we have a − β ≥ a − 1 > 0. Using Lemma 7,
we have, for some constant K,

|Fh(β − iγ)| =

∣∣∣∣∣ 1

2π

∫ a+ih

a−ih

xs−β+iγ

s− β + iγ
ds

∣∣∣∣∣
=

∣∣∣∣∣ 1

2π

∫ a−β+i(γ+h)

a−β+i(γ−h)

xt

t
dt

∣∣∣∣∣
≤ Kxa−β

(a− β + γ − h) log x
≤ Kxa−β

(a− 1 + γ − h) log x

and so ∑
γ>h

xβ

γ
|Fh(β − iγ)| ≤ Kxa

log x

∑
γ>h

1

γ(a− 1 + γ − h)
.

Let T > 0 be large enough so that (according to Lemma 25) D(h) ≤ 2 log h
for h ≥ T . By increasing T if necessary, we can also assume that log(T + j) ≤
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(T + j)1/2 for all j ≥ 0. Then if h ≥ T , we have

∑
γ>h

1

γ(a− 1 + γ − h)
=

∞∑
j=0

∑
h+j<γ≤h+j+1

1

γ(a− 1 + γ − h)

≤
∞∑
j=0

2 log(h+ j)

(h+ j)(a− 1 + j)
≤ 2

∞∑
j=0

(h+ j)1/2

(h+ j)(j + a− 1)

≤ 2

∞∑
j=0

1

(h+ j)1/4(h+ j)1/4(j + a− 1)
≤ 2

h1/4

∞∑
j=0

1

(h+ j)1/4(j + a− 1)
.

The last infinite series converges, and so we conclude that

lim
h→∞

∣∣∣∣∣∣
∑
ρ

xρ

ρ+ b
Fh(ρ)−

∑
|Im(ρ)|≤h

xρ

ρ+ b
Fh(ρ)

∣∣∣∣∣∣ = 0.

Before considering the last two terms of (26), we prove a lemma. We will use

the fact that the harmonic numbers Hn =

n∑
k=1

1/k are of order log n as n→∞,

so that we can write Hn = log n(1 + εn) where εn → 0 as n→∞.

Lemma G Denote by γ the imaginary part of a root of ξ(s). Then

lim
h→∞

1

h

∑
0<γ≤h

1

γ
= 0 (38)

and if c > 0,

lim
h→∞

1

h

∑
0<γ≤h

1

c+ h− γ
= 0 (39)

Proof. Let N be an integer large enough so that (according to Lemma 25)
the number of roots in [N + j,N + j + 1] is at most 2 log(N + j), for all j ≥ 0.
We then find

1

h

∑
0<γ≤h

1

γ
=

1

h

∑
0<γ≤N

1

γ
+

1

h

∑
N<γ≤h

1

γ

and the limit of the first (finite) sum is 0 as h → ∞. For the second sum, we
find

1

h

∑
N<γ≤h

1

γ
=

1

h

bh−Nc∑
j=0

∑
N+j<γ≤N+j+1

1

γ
≤ 1

h

bh−Nc∑
j=0

2 log(N + j)

N + j

≤ 2 log h

h

bhc∑
j=0

1

N + j
≤ 2 log h

h
HN+bhc =

2 log h

h
log(N + h)(1 + εh).

Since (log h)2/h→ 0 as h→∞, this proves (38).
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To prove (39), it is enough to consider (as for (38)) the sum for N < γ ≤ h.
We find

∑
N<γ≤h

1

c+ h− γ
=

bh−Nc−1∑
j=0

∑
N+j<γ≤N+j+1

1

c+ h− γ
+

∑
N+bh−Nc−1<γ≤h

1

c+ h− γ
.

The second sum is at most (2 log h)/c. The first sum is at most

bh−Nc−1∑
j=0

2 log h

c+ h−N − j − 1
≤ 2 log h

(
1

c
+Hbh−Nc

)
≤ 2 log h

(
1

c
+ log h(1 + εh)

)
.

This proves (39) �
We now consider the last two terms of (26). We have

Fh(ρ)− 1 =
1

2πi

∫ a+ih

a−ih

xs−ρ

s− ρ
ds− 1 =

1

2πi

∫ a−β−iγ+ih

a−β−iγ−ih

xt

t
dt− 1

=
1

2πi

∫ a−β+i(γ+h)

a−β−i(γ+h)

xt

t
dt− 1− 1

2πi

∫ a−β+i(h+γ)

a−β+i(h−γ)

xt

t
dt.

Using the estimate (21) and Lemma 7, we find

xβ

γ
|Fh(ρ)− 1| ≤ xa

π log x

1

γ(γ + h)
+
Kxa

log x

1

γ(c+ h− γ)

=
xa

πh log x

(
1

γ
− 1

γ + h

)
+

Kxa

(c+ h) log x

(
1

γ
+

1

c+ h− γ

)

≤
(

xa

π log x
+
Kxa

log x

)
1

hγ
+
Kxa

log x

1

h(c+ h− γ)
.

So using (38) and (39) we find

lim
h→∞

∑
|Im(γ)|≤h

xρ

ρ+ b
(Fh(ρ)− 1) = 0.

A Euler Product Formula

• Let p1, p2, p3, . . . be the prime numbers, and Pm = {pi : 1 ≤ i ≤ m}. Let
s be a complex number with σ = Re(s) > 1. Then

∞∑
j=1

1

psji
=

(
1− 1

psi

)−1
,
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and so
m∏
j=i

(
1− 1

psj

)−1
=

∑
f∈Z+

m

1

p
sf(1)
1 p

sf(2)
2 · · · psf(m)

m

and by the fundamental theorem of arithmetic, this last sum is
∑
n∈Pm

1

ns
,

that is absolutely convergent because dominated by the series

∞∑
n=1

1

nσ
. So

we can write

ζ(s) =

∞∑
n=1

1

ns
=

m∏
j=i

(
1− 1

psj

)−1
+
∑
n 6∈Pm

1

ns
.

If n ∈ Pm, then n > m, and so∣∣∣∣∣∣
∑
n6∈Pm

1

ns

∣∣∣∣∣∣ ≤
∞∑
n=m

1

nσ
→ 0 as m→∞.

So letting m→∞ in

m∏
j=i

(
1− 1

psj

)−1
= ζ(s)−

∑
n 6∈Pm

1

ns

we conclude that
∞∏
j=i

(
1− 1

psj

)−1
= ζ(s) (A1)

and the convergence is uniform on Re(s) ≥ a for any a > 1.

• Let Bn be as in the previous item. Then

log
∑
k 6∈Bn

1

ks
=

n∑
i=1

log

(
1− 1

psi

)−1
, s > 1.

The sum on the right is

n∑
i=1

∞∑
m=1

1

m

1

pmsi
=

n∑
i=1

1

psi
+

n∑
i=1

∞∑
m=2

1

m

1

pmsi

and the second sum on the right is bounded by

pn∑
r=2

∞∑
m=2

1

m

1

rms
≤ 1

2

pn∑
r=2

∞∑
m=2

(
1

rs

)m
=

1

2

pn∑
r=2

1

r2s
1

1− r−s

=
1

2

∞∑
r=2

1

rs(rs − 1)
≤ 1

2
.
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So letting n→∞ we see that

log ζ(s) =

∞∑
i=1

1

psi
+B(s) for s > 1, (A2)

where |B(s)| ≤ 1/2 for s ≥ 1. Hence the sum

∞∑
i=1

1

psi
diverges as s → 1+

like log ζ(s).

B Extension of the factorial

Let s ∈ C, and s not a negative integer. Define, for n ≥ 0, u0 = 1 and

un =
n!(n+ 1)s

(s+ 1)(s+ 2) · · · (s+ n)
, n ≥ 1.

Then

un
un−1

=
1

1 + s
n

(
1 +

1

n

)s
=

(
1− s

n
+

1

n2
an

)(
1 +

s

n
+

1

n2
bn

)
= 1 +

cn
n2
,

where an, bn, cn are bounded as n → ∞. So by standard results about infinite

products [Appendix C]

∞∏
n=1

un
un−1

converges absolutely. This means that

lim
n→∞

n∏
k=1

uk
uk−1

= lim
n→∞

un

exists for all s ∈ C, s not a negative integer, and we define it to be Π(s). So

Π(s) = lim
n→∞

n!(n+ 1)s

(s+ 1)(s+ 2) · · · (s+ n)
, s 6= −1,−2,−3, . . . .

If s = m is a positive integer, then

un =
n!(n+ 1)m

(m+ 1) · · · (m+ n)
= m!

n!(n+ 1)m

(m+ n)!
= m!

(n+ 1)(n+ 1) · · · (n+ 1)

(n+ 1)(n+ 2) · · · (n+m)

→ m! as n→∞.

So Π(m) = m! and Π(s) is an extension of the factorial. Some routine calcula-
tions show that

Π(s) =

∞∏
k=1

(
1 +

s

k

)−1(
1 +

1

k

)s
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C Infinite products

1. Suppose sk, k ≥ 1 are complex numbers, and let pn = s1s2 · · · sn =

n∏
k=1

sk.

(a) If lim
n→∞

pn exists and is non-zero, we denote it by

∞∏
k=1

sk, we call it the

infinite product of the sequence sk, and say that the infinite product
converges.

In this case, clearly we must have sk 6= 0 for all k, and if we let

p =

∞∏
k=1

sk, we have

sn =
pn
pn−1

→ p

p
= 1 as n→∞.

So a necessary condition for the infinite product

∞∏
k=1

sk to converge

is that sk → 1 as k →∞.

(b) If sk 6= 0 for all k but lim
n→∞

pn = 0, we say that the infinite product

diverges to zero. An example is the case sk = a for all k, where
|a| < 1.

(c) If sk = 0 for some k, but there is some m such that sk 6= 0 for k ≥ m,
and the infinite product smsm+1sm+2 · · · converges, we say that the
infinite product converges to zero. Note that in this terminology
(used for example by Whittaker & Watson in A course of modern
analysis) an infinite product that converges to zero does not converge.
Other sources will say that the infinite product diverges as soon as
lim
n→∞

pn = 0.

2. Since

log

n∏
k=1

(1 + sk) =

n∑
k=1

log(1 + sk),

we see from the definitions that

∞∏
n=1

(1 + sn) converges ⇐⇒
∞∑
n=1

log(1 + sn) converges .

Note that if

∞∑
n=1

log(1 + sn) converges, then

∞∏
n=1

(1 + sn) = exp

( ∞∑
n=1

log(1 + sn)

)
6= 0.
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3. Let sn be a sequence of complex numbers, with sn 6= −1 for all n. So
log(1 + sn) is defined for all n. Suppose sn → 0 as n→∞. Find m such
that |sk| ≤ 1/2 for k ≥ m. Then we find, for k ≥ m,

log(1 + sk) = sk

(
1 +

∞∑
n=1

(−1)n

n+ 1
snk

)
.

Since ∣∣∣∣∣
∞∑
n=1

(−1)n

n+ 1
snk

∣∣∣∣∣ ≤
∞∑
n=1

1

n+ 1
|sk|n ≤

1

2

∞∑
n=1

1

2n
=

1

2
,

we find
1

2
|sk| ≤ | log(1 + sk)| ≤ 3

2
|sk|.

So by the comparison test we see that

∞∑
n=1

sn converges absolutely if and

only if

∞∑
n=1

log(1 + sn) converges absolutely.

4. We say that the infinite product

∞∏
n=1

(1 + sn) converges absolutely if the

infinite series

∞∑
n=1

log(1+sn) converges absolutely. If I+ = {i : si ≥ 0} and

I− = {i : si < 0}, absolute convergence of

∞∏
n=1

(1 + sn) means that both

∏
i∈I+

(1 + si) and
∏
i∈I−

(1 + si) converge. By the previous item,

∞∏
n=1

(1 + sn)

converges absolutely if and only if

∞∑
n=1

sn converges absolutely.

D The functional equation for the theta func-
tion

Jacobi’s theta function ϑ(z; τ) is defined for z ∈ C and Imτ > 0 to be

ϑ(z; τ) =
∑
n∈Z

eπin
2τ+2πinz.

Consider the special case

G(u) = ϑ(0; iu2) =
∑
n∈Z

e−πn
2u2

, u > 0
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We prove that G satisfies the functional equation

G(u) =
1

u
G

(
1

u

)
. (D1)

Let u > 0 be fixed, and consider the function

f(x) = e−πx
2/u2

.

Let

f̂(s) =

∫ ∞
−∞

f(x)e2πixsdx

be its Fourier transform. Then by Parseval’s theorem [E3]∑
n∈Z

f(n) =
∑
n∈Z

f̂(n).

We find ∑
n∈Z

f(n) =
∑
n∈Z

e−πn
2/u2

= G

(
1

u

)
.

Using the integral formula ∫ ∞
−∞

e−πx
2

dx = 1

and Cauchy’s theorem to change the path of integration from (−∞+ iu,∞+ iu)
to (−∞,∞), we also find

f̂(n) =

∫ ∞
−∞

e−πx
2/u2

e2πixndx = u

∫ ∞
−∞

e−πt
2

e2πiuntdt = ue−πu
2n2

∫ ∞
−∞

e−π(t−iu)
2

dt

= ue−πu
2n2

∫ ∞+iu

−∞+iu

e−πz
2

dz = ue−πu
2n2

∫ ∞
−∞

e−πx
2

dx = ue−πu
2n2

.

So we conclude that ∑
n∈Z

f̂(n) = uG(u),

and so by Parseval’s theorem (E3) the functional equation (D1) follows.

E Parseval’s theorem

Let f : R → C be a function that goes to zero sufficiently fast at ±∞. The
Fourier transform of f is

f̂(u) =

∫ ∞
−∞

f(x)e2πixudx.
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We can ”periodify” f by defining

F (x) =
∑
n∈Z

f(x+ n). (E1)

Then by the theory of Fourier series [see Rudin, Real and Complex Analysis],

F (x) =
∑
n∈Z

ane
2πinx, (E2)

where

an =

∫ 1

0

F (x)e−2πinxdx.

We then find

an =

∫ 1

0

∑
m∈Z

f(x+m)e−2πinxdx

=
∑
m∈Z

∫ 1

0

f(x+m)e−2πinxdx

=
∑
m∈Z

∫ m+1

m

f(t)e−2πin(t−m)dt

=
∑
m∈Z

∫ m+1

m

f(t)e−2πintdt

=

∫ ∞
−∞

f(t)e−2πintdt = f̂(−n).

Setting x = 0 in (E1) and (E2), we find∑
n∈Z

f(n) = F (0) =
∑
n∈Z

an =
∑
n∈Z

f̂(−n) =
∑
n∈Z

f̂(n).

This proves Parseval’s Theorem:∑
n∈Z

f(n) =
∑
n∈Z

f̂(n). (E3)

F Jensen’s formula

Suppose that f is analytic on an open set containing B(0, R), and f(z) 6= 0 in
B(0, R). Integrating the Maclaurin series for f we find

f(0) =
1

2π

∫ 2π

0

f
(
Reiθ

)
dθ.
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Note that for any w 6= 0 we have Re(logw) = log |w|. So applying the above
formula to log(f(z)) and taking the real part, we find

log |f(0)| = 1

2π

∫ 2π

0

log
∣∣f(Reiθ)

∣∣ dθ.
Now suppose f has a simple zero at z0 ∈ B(0, R), and z0 6= 0. If we can find

some φ(z) with a simple pole at z0, without zeros for |z| ≤ R, and such that
|φ(z)| = 1 on |z| = R, then the function f(z)φ(z) has no zeros in B(0, R), and
since |f(z)φ(z)| = |f(z)| for |z| = R, applying the above formula to f(z)φ(z)
we have

log(|f(0)φ(0)|) =
1

2π

∫ 2π

0

log(|f(Reiθ)|dθ.

Such a factor is

φ(z) =
R2 − z0z
R(z − z0)

,

as we can see by noting that R2 − z0z 6= 0 in B(0, R), and for |z| = R,∣∣∣∣ R2 − z0z
R(z − z0)

∣∣∣∣ =

∣∣∣∣ (R2 − z0z)z
R(z − z0)z

∣∣∣∣ =

∣∣∣∣R2(z − z0)

R2(z − z0)

∣∣∣∣ = 1.

Since φ(0) = R/|z0|, we find

log

(
|f(0)| R

|z0|

)
=

1

2π

∫ 2π

0

log
∣∣f(Reiθ)

∣∣ dθ.
In the same way, if f(0) 6= 0 and f has zeros z1, . . . , zk in B(0, R) (repeated

according to multiplicity), consider f(z)
R2 − z1z
R(z − z1)

· · · R
2 − zkz

R(z − zk)
. We then find

Jensen’s formula:

log

(
|f(0)| R

|z1|
· · · R
|zk|

)
=

1

2π

∫ 2π

0

log
∣∣f(Reiθ)

∣∣ dθ.
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