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Algebra in the Renaissance1

1 Introduction

The general cultural movement of the Renaissance in Europe had a pro-
found impact also on the mathematics of the time. Italy was especially
impacted.

Up to this time, the Italian merchants traveled widely throughout
the East, bringing goods back in hopes of making a profit. They needed
little by way of mathematics. Only the elementary needs of finance were
required.

� Determination of costs
� Determination of revenues

After the crusades, the commercial revolution changed this sys-
tem. New technologies in ship building and safety on the seas allowed

1 c°2000, G. Donald Allen
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the single merchant to become a shipping magnate. These sedentary
merchants could remain at home and hire others to make the journeys.
Freed from the labor of travel, they now had time to make business
deals. Thus they needed skills at financial capitalization, creation of
instruments of credit, and generation of bills of exchange. At the base
of all these was the computation of interest.

Double-entry bookkeeping began as a way of tracking the con-
tinuous flow of goods and money. The economy of barter was slowly
replaced by the economy of money we have today. Needing more math-
ematics, they inspired the emergence of a new class of mathematician
called abacist, who wrote the texts from which they taught the neces-
sary mathematics to the sons of merchants in schools created for just
this purpose. There are hundreds still in existence.

(Compare quadrivium (arithmetic, geometry, music, astronomy. Com-
pare trivium: (grammar, rhetoric, and dialectics)).

2 The Italian Abacists

The Italian abacists of the 14th century were instrumental in teaching the
merchants the �new� Hindu-Arabic decimal place-value system and the
algorithms for using it. There was formidable resistance to this system,
in Italy and most of Europe. These abacists had thoroughly studied
Arabic mathematics, which emphasized algebraic methods. In fact, for
many years Roman numerals were used to keep account ledgers. The
old system of counting boards required the board plus a bag of counters.
The new system required only pen and paper. By and by, as with new
technologies in general, the superior Hindu-Arabic system won out.
This took centuries.2

Note. �Believe it or not� ....The decreasing costs and availability of
paper was a factor in this.

2Ever and even today a conservative group, bankers and financiers were reluctant to change their system
of calculation from thoroughly tested and well understood procedures.
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3 Mathematical Texts

Mathematical texts were mostly practical, teaching only those problems
young merchants would need in carrying out daily transactions. Prob-
lems and their solutions were described in detail, with all steps fully
described.

Besides the business problems required for their profession there
were also recreational problems. There were problems in geometry,
elementary number theory, the calendar, and astrology.

The texts did not dwell on problems without a solution. Therefore,
some student-teacher interaction would accompany the learning.

During the 14th and 15th centuries the abacist extended the Islamic
methods by introducing abbreviations and symbolisms, developing new
methods for dealing with complex algebraic problems.

Perhaps most important were the lessons learned in the use of
algebra to solve practical problems.

� Example. The gold florin is worth 5 lire, 12 soldi, 6 denarii in
Lucca. How much (in terms of gold florins) are 13 soldi, 9 denarii
worth. [One was given the relative worth of the soldi, denarii and
lire (lira)3.]

� Example. A field is 150 feet long. A dog stands at one corner
and a hare at the other. The dog leaps 9 feet in each leap while the
hare leaps 7. In how many feet and leaps with the dog catch the
hare. [Assume leaps are made consecutively in the same time.]

Partly because of this practical need
for mathematics the new direction of

mathematics was toward
algebraic methods.

3The basis for comparison between these units varies over time, but during the reign of
Cosimo I de Medici (in Florence) the following conversion applied: 1 gold ßorin was 3.54
grams of pure gold. Then a single gold ßorin is equivalent to 7 Lira. The Lira was worth 20
Soldii, and the Solda was worth 12 Denarii.
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3.1 New Algebraic Techniques

Unlike Islamic algebra, which was entirely rhetorical, the abacists al-
lowed the use of symbols for unknowns. Standard words were:

cosa thing
censo square
cubo cube
radice root
p̄ più (plus)
m̄ meno (minus)

From Antonio de� Mazzinhi (1353-1383), known for his clever-
ness in solving algebraic problems, we have the example. � Find two
numbers such that multiplying one by the other makes 8 and the sum
of their squares is 27.�

The solution begins by supposing that the first number is un cosa
meno la radice d�alchuna quantità (a thing minus the root of some
quantity) while the second number equals una cosa più la radice d�alchuna
quantità (another thing plus the root of some quantity). We have

(x−√y)(x+√y) = 8

(x−√y)2 + (x+√y)2 = 27

Answer: x =
√
43
2
, y = 11

4
. Solve the problem.

3.2 Higher Degree Equations

Another innovation of the abacists was their extention of the Islamic
quadratic solving techniques to higher order equations.

Of course, each text began with the standard six type of quadratics
as described by Al-Khwarizmi. But many went further.

Maestro Dardi of Pisa in a 1344 work extended this list to 198
types of equations of degree up to four, some involving radicals. He
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gave an example of how to solve a particular cubic equation, but the
methods would not generalize. Another mathematician of this age was
Luca Pacioli (1445-1517), who was renown for his teaching, and his
library with volumes collected over many years. He also collaborated
with Leonardo da Vinci.

4 Renaissance Mathematicians

Nicholas of Cusa (1401 - 1464)

German Nikolaus Von Cusa, (Latin Nicolaus Cusanus), mathemati-
cian, scholar, experimental scientist, and influential philosopher stressed
the incomplete nature of man�s knowledge of God and of the universe.
He was ordained in 1440, became a cardinal in Brixon and in 1450
was elevated to bishop there. He was interested in geometry and logic.
He contributed to the study of infinity, studying the infinitely large and
the infinitely small. He also studied astronomy producing a book. For
Nicholas, God and only God is absolutely infinite. The universe reflects
this divine perfection by being relatively infinite, with no circumference
and no center.

Cusa is best known as a philosopher on the incomplete nature of
mankind�s knowledge of the universe. He regarded the circle as the limit
of regular polygons which he then applied in his religious teachings to
demonstrate the nearness of yet the unattainability of truth. In other
words, he claimed that the search for truth was equal to the task of
squaring the circle. This second statement reveals the continuing and
profound influence of the ancient Greeks on mathematicians and even
upon the church itself.

Among Cusa�s other interests were diagnostic medicine and applied
science. He emphasized knowledge through experimentation, a break
with Peripatetic views. He anticipated the work of the astronomer
Copernicus by suggesting a movement in the universe not entirely geo-
centric in nature. In his study of plant growth, he concluded that plants
absorb nourishment from the air. He also produced a map of Europe,
and founded a hospital at his birthplace in 1458.
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Johann Müller Regiomontanus
(1436 - 1476) Regiomontanus was
born Johann Müller of Königsberg
but he used the Latin version of his
name (Königsberg = �King�s
mountain�). Regiomontanus. At
the age of fourteen he entered the
University of Vienna. He became
enchanted with all things
mathematical and astronomical.
Vowing to read Ptolemy�s Almagest
in is original, Müller studied Greek
in Italy and devoured all available
texts, whether in Greek or Latin,
whether on astronomy or mathematics. Upon his return to Vienna, he
taught his new learning achieving phenomenal success. He was called
to Nuremberg, where a sponsor built him a full scale observatory. His
instruments were the finest, whether purchased or improved by himself.
In a remarkable quote taken from a letter to another mathematician, we
feel his total joy in mathematics and astronomy.

�I do not know whither my pen will run; it will use up all
my paper if I don�t stop it. One problem after another occurs
to me, and there are so many beautiful ones that I hesitate as
to which I should submit to you.�

Regiomontanus was a true �Renaissance man�. He was a modern
scientist with a love of classical learning. He set up a printing press,
an observatory, and possessed a good library. In January 1472 he made
observations of a comet which were accurate enough to allow it to be
identified with Halley�s comet 210 years (and three returns of the 70
year period comet) later. He furnished a completed the Latin trans-
lation of The Almagest. He wrote Epitome of Ptolemy�s Almagest �
commentaries on the mathematical portions.

In 1464 he wrote De triangulis omnimodis (On Triangles of Every
Kind) and early text on trigonometry in which he solved plane triangles,
proved the law of sines, and gives and introduction to spherical geom-
etry. His presentation is strictly classical, beginning with axioms and
proofs following constructed on their basis. formulas given in rhetor-
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ical form. The book was not published until about 1530 however. In
Tabulae directionum, a trigonometric treatise, he furnished trigonomet-
ric tables. For his purpose he selected R = 600, 000 or 10,000,000
or 600,000,000. It includes tangent table with R = 100, 000 (e.g.
tan 89◦ = 5, 729, 796). Actual: tan 89◦ × 100, 000 = 5, 728, 996.

In 1475 Pope Sixtus IV summoned Regiomontanus to Rome to
advise on calendar reform and to become bishop of Regensburg. How-
ever, just a year later he died before he could take office, most likely
poisoned by his enemies.

Nicolas Chuquet, (c. 1445 -c. 1500), a French physician, Chuquet
wrote Triparty en la science des nombres (1484), a work on algebra
and arithmetic in three parts. However, it was not printed until 1880.
The mathematics in Triparty was known to the Islamic algebraists, but
Triparty is the first detailed algebra in French. Below are a few details
on the nature and style of this work.

� Triparty � Part I
� He uses the Hindu-Arabic place-value system

� Use the result for fractions between: Given a, b, c, d > 0. Then a+c
b+d

is between a
b
and c

d
. e.g. 2

7
is between 1

2
and 1

5
. No proof is given.

He uses this to approximate roots of quadratics.

� Triparty � Part II
� uses the fraction rule to extract square roots: Find

√
6. Solution.

(1) 2 < r < 3. (2) 2 1/3 < r < 2 1/2. (3) 2 2/5, 2 3/7, 2 4/9, 2 5/11, 2 9/20.

� introduces some notation

� p̄-plus
� m̄-minus,
� underline for grouping,

� R2-square root,
� R3-cube root.

So,
R26 =

√
6 R214p̄R2180 =

q
14 +

√
80
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� allows negative coefficients

� Triparty � Part III
� introduces exponential notation

.5.1 .6.2 .10.3

5x 6x2 10x3

.9.0 .9.2.m (.9. second mains)
9x0 9x−2

Therefore,

.72.1 party par .8.3 egualx .9.2.m

� novelty

.4.1 egualx m̄.20 4x = −2

� solves axm + 6xm+n = cxm+2n. This generalizes al Kashi.

� notes that there are multiple solutions of some system of two equations
in three unknowns.

Luca Pacioli (1445 - 1517), an Italian, published a Latin translation
of Euclid�s Elements , the first printed edition. He left unpublished a
work on recreational problems, geometrical problems and proverbs. It
makes frequent reference to Leonardo da Vinci who worked with him
on the project.

Pacioli was a teacher of some renown. He also assembled a
vast collection of mathematical materials over some 20 years. Pacioli
wrote Summa de arithmetica, geometrica proportioni et proportionalita
(1494) It gives a summary of the mathematics known at that time.

Summa studies arithmetic, algebra, geometry and trigonometry and
provided a basis for the major progress in mathematics which took place
in Europe shortly after this time. It overshadowed Chuquet�s Triparty
but was not mathematically significant. Subsequently, Chuquet�s work
was scarcely mentioned.
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5 The German School

Johann Widman (b. ∼1460), at the University of Leipzig wrote Rech-
nung auff allen Kauffmanschafften used + and − first time in print.
This encouraged the use of these new symbols.

Adam Riese (1492-1559), German,
wrote Die Coss (1524), an influential
arithmetic and algebra text. In Germany,
the term �Das macht nach Adam Riese�
still survives as German children know
the expression meaning �that gives
according to Adam Riese� when doing
arithmetic. For income he wrote arithmetic textbooks. Rechenung auff
der Linihen und Federn in zal, ma�s und gewicht auff allerley hand-
ierung ... is the most famous. Published in 1550, it was a textbook
written for everyone, not just for scientists. It contains addition, sub-
traction, multiplication and division. This is remarkable because at
that time division could only be learned at the university. Even many
scientists did not know how to divide. Riese offered methods derived
from the abacus those derived from India. The printing of this book
came just after the Gutenberg printing press was invented. Many copies
printed

Christoph Rudolff, (ca. 1500-ca. 1545), German, wrote Coss (1525).
In it he uses decimal fractions and modern notation for roots.

Peter Apian, (1495-1552), German, wrote Rechnung (1527). In it we
see Pascal�s triangle (!!) appears on title page � fully one century
before Pascal.

Michael Stifel (1487-1567), German monk turned itinerant Lutheran
preacher; for a time a professor at Jena. We wrote Arithmetica integra
(1544). It was the most important of the 16th century algebras: Features:

� used the + and the −.
� significant for treatment of negative numbers, radicals and powers
� using negative coefficients. All the many cases of quadratics are
reduced to just one, but no negative roots allowed



The Renaissance 10

� irrationals.

6 The English School

Robert Recorde, (1510 - 1558), an Englishman, virtually established
the English school of mathematics and first introduced algebra into
England. Recorde is best known for inventing the �equals� symbol
=== which appears in his book The Whetstone of Witte (1557).

Recorde was educated at Oxford and Cambridge. He became physi-
cian to King Edward VI and Queen Mary. He served for a time in
Ireland as �Comptroller of Mines and Monies�.

He wrote many textbooks, for example The Grounde of Artes in
1540 was a very successful commercial arithmetic book teaching the
�perfect work and practice of Arithmeticke etc�, in Recorde�s own
words. The book discusses operations with Arabic numerals, computa-
tion with counters, proportion, the �rule of three�, and fractions.

In 1551 Recorde wrote Pathwaie to Knowledge which some con-
sider an abridged version of Euclid�s Elements. It is the only one of
his books not written in the form of a dialogue between a master and
scholar.

The �equals� symbol === appears in Recorde�s book The Whet-
stone of Witte published in 1557. He justifies using two parallel line
segments �bicause noe 2 thynges can be moare equalle�.

The symbol === was not immediately popular. The symbol ��
was used by some and �ae� ( or �oe� ), from the word �aequalis� meaning
equal, was widely used into the 1700�s.

Recorde died in King�s Bench prison in Southwark, where he was
committed for debt. Although no official record remains of other crimes,
some historians think he was guilty of much more serious offenses.

Summary of notation
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� P, P - plus;m,m - minus Chuquet and Pacioli
� unknown res (Latin)

chose (French)
cosa (Italian)
coss (German)

� + − Widman (ca. 1490)
� R2, √ , square root Rudolff (1525)
� === Recorde (1557)

7 The solution of the cubic

Only a few years have now past since Andrew Wiles solved the famed
Fermat�s Last Theorem.4 This problem, posed in the 17th century, was
solved in the 20th century. In about 1540 the first analytical solution
of a general cubic equation was determined. Mathematicians had been
working toward the solution for at least 1500 years. Solving the cubic
was one of the significant feats of the next few centuries that would
unshackle the European mathematicians from their Greek heritage.

The solution is richly intertwined with human endeavor not usually
associated with mathematics. The cast of characters was singularly
unsavory, with lies and genius co-mingled, with public disputes and
contests, and with broken promises.

� The Cast:
Geronimo Cardano (1501-1576) Ars magna (1545)
Niccolo Tartaglia (ca. 1500-1577)
Ludovico Ferrari (1522-1565)

4Consider the polynomial
P (x, y, z) = xn + yn − zn.

If n = 2, solutions of P (x, y, z) = 0 are Pythagorean triples. Given two integers m and n, it
is easy to see that x = m2 − n2, y = 2mn, and z = m2 + n2 forms a Pythagorean triple.
If n ≥ 3 Fermat conjectured and in 1995 Andrew Wiles proved that there can be no integer
solutions. This conjecture became known as Fermat�s Last Theorem. Wiles solved it in 1995.
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Scipio del Ferro (ca. 1465-1526)

� Also starring:
Antonio Maria Fiore (1st half 16th century), student,
Annibale della Nave (1500-1558), student

Girolamo Cardano (1501 - 1576)
is famed for his work Ars Magna
which was the first Latin treatise
devoted solely to algebra.
Girolamo Cardano�s name was
Cardan in Latin and in English he
is sometimes known as Jerome
Cardan.

Cardano�s life was anything but
conventional. In his professions,
and there were several, his output
was voluminous. He wrote 230
books. Of those 138 were printed.
Others he burned. Among his
works, he discussed painting and color in De subtilitate rerum (1551)
and physical knowledge of the day in De rerum varietate (1557).

One of his last works was his autobiography, De vita propria liber
(A Book of My Own Life), is as singularly remarkable as a biography as
Ars Magna is in algebra. Published when he was seventy four, he an-
alyzes and confesses with startling candor his habits, character, mind,
likes and dislikes, virtues and vices, honors, errors, illnesses, eccen-
tricities, and dreams. He charges himself with obstinacy, bitterness,
pugnacity, cheating at gambling, and vengefulness. He lists failures,
particularly the proper rearing of his sons. A physician, he discusses
his numerous, often surprising cures. He also reveals a great number of
disabilities, including sexual disfunction, stuttering, palpitation, colic,
dysentery, hemorrhoids, gout, and more. This was one of the very first
modern autobiographies. Although we know him for his mathematics,
his achievements in medicine were impressive and medicine was his
favorite pursuit.

Cardano studied at Pavia and Padua receiving a doctorate in medi-
cine in 1525. He was professor of mathematics at Milan, Pavia and
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Bologna leaving each after some scandal. Cardano lectured and wrote
on mathematics, medicine, astronomy, astrology, alchemy, and physics.
At the age of thirty four he lectured on mathematics, and at thirty five
on medicine. His fame as a doctor was renown. In fact, he was so
famous that the Archbishop of St Andrews in Scotland, on suffering as
he thought from consumption, sent for Cardan. Cardano is reported to
have visited Scotland to treat the Archbishop and cured him.

Cardano is famed for his work Ars Magna (Great Art) which was
the first Latin treatise devoted solely to algebra and is one of the impor-
tant early steps in the rapid development in mathematics which began
around this time (and still continues today). Ars magna made known
the solution of the cubic by radicals and the solution of the quartic
by radicals. These were proved by Tartaglia and Ferrari respectively.
Ferrari was in fact a pupil of Cardan�s. We find in Ars Magna the first
computation with complex numbers although Cardano did not properly
understand it. The work was written completely in the rhetorical style,
symbolism having not yet been invented.

Cardano�s Liber de ludo aleae (1563) was the first study of the
theory of probability. If anything, it is remarkable for its errors as well
as truths. With Tartaglia and a century before Descartes, he considered
the solution of geometric problems using algebra.

Cardano made enemies by the score, and invited upon himself even
more travails. He married miserably and fought unsuccessfully to save
his son from execution for poisoning his unfaithful wife. He was at one
time forbidden to lecture or publish books. In 1570 he was imprisoned
on a charge of having cast the horoscope of Christ.5 In 1571 Pope Pius
V granted him an annuity for life and he settled in Rome and became
astrologer to the papal court. Cardano is reported to have correctly
predicted the exact date of his own death � a prediction made true by
his own suicide.

5Possibly he was also imprisoned for debt.
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Nicolo Fontana Tartaglia (1500 -
1557) was famed for his algebraic
solution of cubic equations which
was published in Cardan�s Ars
Magna. During the French sack of
Brescia (1512), his jaws and palate
were cleft by a saber. The resulting
speech difficulty earned him the
nickname Tartaglia (�Stammerer�),
which he adopted.

Tartaglia was self taught in
mathematics but, having an
extraordinary ability, was able to
earn his living teaching at Verona
and Venice (1534).

The first person known to have solved cubic equations algebraically
was Scipio del Ferro. On his deathbed dal Ferro passed on the secret to
his (rather poor) student Antonio Maria Fiore. A competition to solve
cubic equation was arranged between Fior and Tartaglia. Tartaglia, by
winning the competition in 1535, became famed as the discoverer of a
formula to solve cubic equations. Because negative numbers were not
used (and not even recognized) there was more than one type of cubic
equation and Tartaglia could solve all types; Fior could solve only one
type. Tartaglia confided his solution to Cardan on the condition that he
would keep it secret, and with the implied promise of Cardano in the
hope of becoming artillery adviser to the Spanish army. The method
was, however, published by Cardan in Ars Magna in 1545.

Tartaglia wrote Nova Scientia (1537) (A New Science) on the ap-
plication of mathematics to artillery fire. He described new ballistic
methods and instruments, including the first firing tables. As well, it is
a pioneering effort at solving problems of falling bodies.

Tartaglia also wrote a popular arithmetic text Trattato di numeri
et misure, in three volumes (1556-60) (Treatise on Numbers and Mea-
sures), an encyclopaedic treatment of elementary mathematics. He was
also the first Italian translator and publisher of Euclid�s Elements in
1543. He also published Latin editions of Archimedes�s works.

From a poor family, Ferrari was taken into the service of the noted
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Italian mathematician Gerolamo Cardano as an errand boy at the age
of 15. By attending Cardano�s lectures, he learned Latin, Greek, and
mathematics. In 1540 he succeeded Cardano as public mathematics
lecturer in Milan, at which time he found the solution of the quartic
equation, later published in Cardano�s Ars magna (1545; �Great Art�).
The publication of Ars magna brought Ferrari into a celebrated contro-
versy with the noted Italian mathematician Niccolò Tartaglia over the
solution of the cubic equation. After six printed challenges and counter
challenges, Ferrari and Tartaglia met in Milan on Aug. 10, 1548, for a
public mathematical contest, of which Ferrari was declared the winner.
This success brought him immediate fame, and he was deluged with
offers for various positions. He accepted that from Cardinal Ercole
Gonzaga, regent of Mantua, to become supervisor of tax assessments,
an appointment that soon made him wealthy. Later, ill health and a
quarrel with the cardinal forced him to give up his lucrative position.
He then accepted a professorship in mathematics at the University of
Bologna, where he died shortly thereafter

Ferrari, Ludovico (1522 - 1565) was orphaned at the age of fourteen.
Having no formal education, he was sent as a refugee to Milan where he
joined the household of Girolamo Cardano in 1536. At first he was an
errand boy. Ferrari very likely showed exceptional promise, even before
joining Cardano, and it is probable that this promise is what brought him
to Cardano�s attention. Indeed, through his lectures Cardano introduced
him to Latin, Greek, and Mathematics � not the normal course of
training for an errand boy. He was promoted to the post of Cardano�s
amanuensis, became his disciple, and ultimately collaborator. In 1540,
he was appointed by Ferrante Gonzaga, the governor or Milan, public
lecturer in mathematics in Milan. In so doing, he succeeded Cardano as
public mathematics lecturer in Milan. In this capacity he gave lessons
on the Geography of Ptolemy.

He collaborated with Cardano in researches on the cubic and quartic
equations, the results of which were published in the Ars magna (1545).
Indeed, by all accounts, it was Ferrari who found the method of solving
the quartic equation. The publication of Ars magna brought Ferrari into
a well documented controversy with Tartaglia over the solution of the
cubic equation. After six printed challenges and counter challenges,
Ferrari and Tartaglia met in Milan on Aug. 10, 1548 for a public
mathematical contest. Such challenges were common at that time as
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learned men sought to gain new positions or defend their existing one.
The procedure was for each contestant to offer a set of problems to the
other for solution. The winner was declared to be he who answered the
most questions. Ferrari was declared the winner of this one.

This success brought him immediate fame and many offers for
various positions. Ferrari accepted a position in the service of Ercole
Gonzaga, Cardinal of Mantua, for some eight years (c. 1548 - 1556).
Years later, in 1564, he returned to Bologna where he earned a doctorate
in philosophy. From 1564 until his death in 1565, he was lecturer in
mathematics at the University of Bologna. As an indication of his
prominence, he received an offer from Emperor Charles V who wanted
a tutor for his son.

Scipione dal Ferro (1465 - 1525) lectured at Bologna where he was a
colleague of Pacioli. Dal Ferro is the first to solve the cubic equation
by radicals. He only solved one of the two cases (the fact that 0 and
negative numbers were not in use made many distinct cases). He kept
his discovery secret and only told his student Fior shortly before his
death. Ferrari reports seeing a notebook in del Ferro�s handwriting
where the solution is clearly written down.

7.1 The algorithm for the solution of the cubic

The algorithm for the solution of the cubic requires a canonical form
for the cubic, and this requires a preliminary transformation.

� Transform ax3 + bx2 + cx = d into x3 + px = q, first dividing by a
and then using the transformations6 x = y + β and then y = x.

� Next define u and v by

u− v = x and uv =
1

3
p.

This gives

(u− v)3 + p(u− v) = q

u3 − 3u3v + 3uv2 − v3 + p(u− v) = q
6Having divided out the lead coefficient a, define q (x) = x3 + bx2 + cx+ d. We have q (y + β) =

(y + β)3+ b (y + β)2+ c (y + β)+d = y3+3y2β+3yβ2+β3+ by2+2byβ+ bβ2+ cy+ cβ+d.
The coefficient of y2 is 3β + b. Thus take β = − b

3
to achieve the desired form.
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u3 − v3 − 3uv(u− v) + p(u− v) = q

u3 − v3 = q.

Using v =
p

3
u, substitute to get:

u3 − (p/3)
3

u3
= q

u6 − qu3 = (p/3)3

(u3)2 − q(u3) = (p/3)3.

Solve for u:

u =

q ±
q
q2 + 4(p/3)3

2

1/3

and then for v; finally for x. Now compute v =
p

3
u and then compute

x = u − v. After some simplification we obtain the form given by
Cardano, namely

x =
3

rq
(p/3)3 + (q/2)2 + q/2− 3

rq
(p/3)2 + (q/2)2 − q/2.

However, his solution is rhetorical.

7.2 Examples.

Example 1. Solve x3 + 3x = 4.

Solution.

x = (
√
1 + 4 + 2)1/3 − (√1 + 4− 2)1/3

= (
√
5 + 2)1/3 − (√5− 2)1/3 = 1.

Example 2. In Ars Magna we find x3 = 15x + 4. The solution here,
by the formula, is

x =
3
q
2 +

√−121 + 3
q
2−√−121.
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Cardano knew there was no square root of −121 and he knew x = 4
was a solution. He did not know to proceed. He referred to such square
roots as �sophists�, and thought taking square roots of negative numbers
was �as subtle as it is useless�.

However, from this example Rafael Bombelli (ca. 1526-1573)
made the first step toward complex numbers. Bombelli�s idea was that
the radicals themselves might be related in much the way that the radi-
cans are related. In fact, notice that the terms 3

q
2 +

√−121 = 2+ 11i
and 3

q
2−√−121 = 2 − 11i are complex conjugates7 Therefore it is

reasonable to assume that the first of them has the form 2 + ib. If
2 + ib = 3

√
2 + 11i then it is a simple calculation8 to show that b = 1.

Thus

2 + i = 3
√
2 + 11i

2− i = 3
√
2− 11i

Hence, the root of the cubic is

x = 2 + 1
√−1 + 2− 1√−1 = 4.

What is remarkable is the Bombelli had not the slightest idea of complex
numbers, except some (vague) intuition that the form might be invariant
under algebraic operations.

Cardano also posed the problem with complex roots

x+ y = 10

xy = 40

x = 5 +
√−15

y = 5−√−15

7Recall that the imaginary number i satisÞes i2 = −1. We say that the complex number
c+ di is the complex conjugate of a+ ib if c = a and d = −b.

8Technically, one cubes both sides to get (2 + ib)3 = 8 − 6b2 + i
¡
12b− b3

¢
and 2 + 11i,

respectively. Now set the real parts equal, 8− 6b2 = 2 and solve for b, obtaining b = ±1. We
will take b = 1. The Þnal step is to substitute this value of b into the imaginary parts and

verify that equality obtains. Thus,
¡
12b− b3

¢ ¯̄̄̄
b=1

= 11
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7.3 Further comments.

In connection with angle trisection we consider the following.

cosθ = cos

Ã
2θ

3
+
θ

3

!

= cos
2θ

3
cos

θ

3
− sin 2θ

3
sin
θ

3

=

Ã
cos2

θ

3
− sin2 θ

3

!
cos

θ

3
− 2 sin2 θ

3
cos

θ

3

=

Ã
2 cos2

θ

3
− 1

!
cos

θ

3
+ 2 cos

θ

3

Ã
cos2

θ

3
− 1

!
.

So
4 cos3

θ

3
− 3 cos θ

3
= cos θ.

The cosine of an angle and its trisection are related through the solution
of a cubic. Consequently not only the cube-doubling problem but angle
trisection problems are related to solving cubics. This fact, inspiring
mathematicians to develop results about the constructibility of the solu-
tions of cubic equations would lead to the ultimate resolution of these
two great problems of antiquity.

7.4 Summary:

We may say without reservation that the solution of cubic and quartic
equations was

� The greatest feat of algebra since ancient times
� Not really practical � purely theoretical
� Renewed interest in the trisection problem
� Inspired work to solve general quintics

ax5 + bx4 + cx3 + dx2 + ex+ f = 0
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� Demanded awareness of negative and imaginary numbers � through
the Tartaglia-Cardano formula.

In the connection with imaginary numbers, we consider Rafael
Bombelli (1526 - 1573) an engineer whose projects included reclaiming
land.

In mathematics, Bombelli was the first person to write down the
rules for addition and multiplication of complex numbers. He showed
that, using his methods, correct real solutions could be obtained from
the Cardano-Tartaglia formula for the solution to a cubic. His work
was strictly formal, though.

He wrote Algebra in 1850, his only publication, a few years after
the publication of Ars Magna. It was not published until 1872. It was
nonetheless a very influential work and Leibniz cited Bombelli as an
outstanding master of the analytical art. Features:

� Published in five parts, only three in Bombelli�s life.
� more systematic than Ars Magna � beginning with elementary
material and moving up to cubics and quartics.

� in the tradition of Pacioli�s Summa
� uses considerable symbolism. (e.g. R.q. � square root, R.c. �
cube root) There is even a symbol for powers.

� Tied to the past in he solves many geometric problems, but alge-
braically.

� Gives rules for evaluating complex numbers similar to the calcu-
lation above.

From Boyer, we have

�... we see that great milestones do not appear suddenly,
but are merely more clear-cut formulations along the thorny
path of uneven discovery.�
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8 The Astronomers

Nicolaus Copernicus (1473-1543) was born of a wealthy family in
West Prussia, now Poland, and studied at the University of Cracow.
Appointed to a clerical post, he received a salary and was free to travel
to Italy to further his studies.

He spent his life in Warmia as Canon of Frauenburg Cathedral.
This job gave him sufficient free time to pursue his interests in astron-
omy.

At this time the universe of Ptolemy was the currently accepted
view. That is, the universe was composed of nested spheres centered
at the Earth. There were also the eccenter and epicycle adjustments.
However, by this time parts of the Ptolemaic system were difficult for
astronomers to accept.

Regiomontanus pointed out at least one error on the size of the
moon, other predictions based on the system were found to be incorrect.

Global navigation at that time required precise measurements and
tables, and a precise theory. The discovery of so many new worlds also
led to the conclusion that Ptolemy�s geography in error.
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The Catholic Church noted that the Julian calendar, used since
Roman times, was also in error. In fact the period of the earth was 11
1/4 minutes less than the 365 1/4 days it was based on. The seasons
would soon be out of align with the calendar. Indeed, the vernal equinox
was then on March 11, not March 21. The stage was set for a new
theory � though the Church sought a calendar reform, not a new theory
of the universe.

Copernicus did not participate in the reform believing that a �fix� to
Ptolemy was impossible, but rather read up on all the ancient teachings
about a non-earth centered universe. He explored the consequences of
such a system.

His studies were published as De Revolutionibus Orbium Coelestium
(On the Revolution of the Heavenly Spheres) in 1543, the year of his
death. The work, which puts the sun at the center of the universe, is
technical and detailed and includes many celestial observations made by
himself and his predecessors. He describes the nature of the revolution
of the planets and their moons. The concentric spheres were now for
each of the planets about the sun.

Curiously, there was at this time no physics to keep the planets in
orbit!! Copernicus was still partly Aristotelian, the spheres moved in
and of themselves. This issue was still below of �horizon of human
consciousness�.

Yet the Copernican simplification was not great. Much needed
effort was required to overcome the basic spherical (circular) orbits he
hypothesized. (epicycles, eccenters)

Tycho Brahe (1546-1601)

Better and better observational data was required, and astronomy
found a champion in Tycho Brahe (1546-1601) who was precise to
a fault. For years, after the new star in the constellation Cassiopeia
had cause Tycho to rededicate his life to observational astronomy, he
collected data. Before Tycho, astronomers did not methodically and sys-
tematically search the heavens or plot positions of the planets. Rather,
they recorded first risings, oppositions, and the like called for by the
existing theory. It was this data of neutral observations in the patient
hands of Johannes Kepler that was to lead to the laws of planetary
motion.
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Tycho Brahe was a rather eccentric astronomer who spent much
of his life improving observational data. Yet he was also an artist.
Everything he undertook had to be innovative and beautiful. He built
a print shop to produce and bind his manuscripts as he desired. He
imported craftsmen to construct the finest astronomical instruments, and
he paid Italian and Dutch artisans to design and decorate his observatory.
All this required money. And Tycho found a generous sponsor in King
Frederick II of Denmark. Frederick gave him the island of Ven in the
middle of the sound halfway between Copenhagen and Helsingor.

After Frederick died in 1588 Tycho�s influence dwindled. Under
Frederick�s son Christian IV, most of his income was stopped for a
variety of reasons, not the least of which was his increasing demands
and decreasing services.

Eventually, at odds with king, church, and nobility, Tycho left Ven
in 1597 and settled in Prague under the patronage of Emperor Rudolf II
in 1599, who also some years later supported the astronomer Johannes
Kepler.

His measurements were accurate to a couple of minutes of arc,
far exceeding the best of work of any of the ancients. His precise
observations, and his study of a nova, moved him to greatly doubt the
Ptolemaic theory. Change was possible in the heavens.

Though Tycho was primarily an observer, he has the wisdom to
employ more theoretical thinkers. The most notable was Johannes Ke-
pler.
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Johannes Kepler (1571-1630) was
born in Weil-der-Stadt in southwest
Germany. He studied at Tübingen
from 1587 to 1594 on a
scholarship funded by the Duke of
Württemberg. Originally intent on
studying for the Lutheran ministry,
he was influenced by Michael
Maestlin�s lectures on Copernican
astronomy. Frail and myopic, he
soon became a militant supporter
of the heliocentric philosophy.
Completing his education, he took
a position as the provincial
mathematician and teacher in a Lutheran school in Graz. To supple-
ment he took to �legitimate�9 astronomy by becoming involved in the
preparation of an almanac of astrological forecasts.

As most contemporary scientists and mathematicians of this
time, the influence of the ancient teachings was particularly strong. At-
tempts to �model� this universe were made with tools of ancient days.
For example, in Mysterium Cosmographicum (1597), Kepler poses the
question: �Why are there six planets?� He answers thusly: Because
God is the great geometer, he wanted to separate the planets with the
regular solids. There were five such solids, and this is why God made
six planets. He developed this thesis in some detail. Remarkably,
this early model of a theological/mathematical heliocentric astronomy
was very well received. For many, it fit well with extant knowledge,
and importantly it was tied to ancient knowledge. A note of appreci-
ation arrived from Galileo who received one of the two copies sent to
Venice. At that time, Kepler may have had no direct knowledge of the
young-ish Galileo Galilei (1564 - 1642), himself just establishing his
own brilliant career. The copy sent to Tycho Brahe brought the young
philosopher/mathematician to his attention.10

His greatest work was a result of a long collaboration and exami-
9At this time astrology and astronomy co-mingled as a single subject. Kepler dismissed the former with

contempt, believing it to be based on superstition. Recall, Cardano was an astrologer to the Papal court.
10It is worthwhile to mention that the printing press at this time was barely more than a century old. Yet,

it was already contributing to the rapid dissemination of knowledge, thereby accelerating progress and of
course, criticism. Without the press, Kepler�s work may have gone unnoticed for decades or lost altogether.
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nation with Tycho and his data. Working with Tycho�s observations of
Mars, Kepler spent 8 years making calculations to predict its orbit. He
tried everything. He tried eccenter models. He tried to obtain better
measurements of the Earth.

Finally, he struck pay dirt. Still basing his model on a circular orbit,
he first discovered that �equal areas were swept out in equal times.�
This is now known a Kepler�s second law. He gave an �infinitesimal�
type of argument for it but realized that the proof was not rigorous.

He discovered the elliptical path of the orbits when he finally re-
jected the circular orbit theory and adapted an �oval� orbit model. It
was only when trying to measure the oval shape precisely that he used
an ellipse to approximate it! In fact, the ellipse was exactly the oval
shape that nature has commanded the orbits of her planets to obey.
Therefore, that the orbit is elliptical is Kepler�s first law. He presents
his results in Astonomia Nova in 1609. As an attempt to validate the
Copernican hypothesis, it would not have survived had not the con-
clusions proved better than the best Ptolemaic predictions of the day.
Indeed, the Copernican idea may have been forgotten, receding into
history until new evidence forced its re-emergence. Incidently, the de-
termination of the perimeter of the ellipse was still an open problem at
this time. Kepler gave the approximation

Pellipse = πa · b
where a and b are the lengths of the semi axes. This is of course wrong;
the exact perimeter is given by the integral 4

R π/2
0

√
a cos2 t+ b cos2 tdt,

and this formulation, even if given conceptually and rhetorically, would
have been generally incomprehensible at the time.

Kepler�s third law appeared in Harmonice Mundi, stated as an
empirical fact based on empirical observation of Tycho�s data. It states:
�The ratio of the period of two planets is directly proportional the 3

2
power of their mean distances from the sun.

The discovery of Kepler�s laws provides a picture of just how
science is often thought to be discovered. Formulate a hypothesis;
test data against the hypothesis; correct the hypothesis; and repeat until
agreement is reached. After Kepler and Galileo had finished their work,
pointing to simple mathematical regularities as formal causes requiring
little further analysis, all explanation was required to be mechanical.
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The mechanical/mathematical model grew to dominate explanation of
observable events � and so it continues to this day. Note however,
remarkable as what they accomplished undoubtedly is, there was still no
�physics� to hold the planets in orbit � to prevent them from crashing
together or separating and proceeding on their own independent paths
into the cosmos. It would take an even greater mind to propose the
fundamental law that at once kept the planets in their place and forced
their orbits to follow along those elliptical courses predicted by Kepler.
That intellect was of course Isaac Newton (1642 - 1727), who drew his
first breath the year Galileo died.

Kepler also made advances in mathematics. For example, he de-
termined volumes of wine barrels as volumes of revolution of sectors
of circles. He also showed that the largest parallelepiped contained in
a sphere is a cube. He gave a demonstration of the area of a circle to
be A = 1

2
C r, where r is the radius and C is the circumference. See

the diagram below.

Each sector of the circle can be approximated by a triangle. The area
of each sector is thus ∼ 1

2
r b, where b is the common base and r

is the radius. Summing, the bases accumulate to approximately the
circumference of the circle and hence the formula.

9 Problems

1. Apply the Cardano algorithm to solve the cubic equation x3 =
8x+3, which has the obvious solution x = 3. Can you obtain the
solution?
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2. Apply the Bombelli ansatz to resolve the answer to the above
question.

3. (i) Show that trisecting the angle 60o is equivalent to solving the
cubic y3 − 3y = 1. (ii) One important step in showing that the
angle 60o cannot be trisected is to show that the cubic y3−3y = 1
has no rational solutions. Show this. (Hint. Begin with the
assumption that y = p

q
is a rational solution where p and q are

relatively prime. Derive a contradiction. Alternatively, apply the
Cardano formula.)

4. Show the essential step of Bombelli�s argument, if 2 + ib =
3
√
2 + 11i this implies that b = 1.

5. Generalize your conclusion in the problem above to show that
y3 − ay = 1 has no rational solutions for positive a.

6. Complete Mazzinhi�s solution to the problem, � Find two numbers
such that multiplying one by the other makes 8 and the sum of
their squares is 27,� using his transformations. Solve the problem
directly by first completing the square.

7. Derive alà Kepler the volume of a sphere to be V = 1
3
r S, where

r is the radius and S is the surface area. Make your division of
the sphere into solid angles and use the formula for the volume
of a pyramid. (Vpyramid = 1

3
hb2, where h is the height and b is the

side length of the base.)

8. What steps must be taken to make the argument above rigorous?


